积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(53)机器学习(53)

语言

全部中文(简体)(52)英语(1)

格式

全部PDF文档 PDF(53)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 53 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 全连接神经网络实战. pytorch 版

    全连接神经网络实战 . pytorch 版 Dezeming Family Dezeming Copyright © 2021-10-02 Dezeming Family Copying prohibited All rights reserved. No part of this publication may be reproduced or transmitted in any 就讲什么。本书不可避免要 参考 [2] 的讲解方式,但我们对讲解顺序和内容,以及程序代码都做了大量的改进。说了那么多, 总之,我们的目标是写一个最好的最容易上手的 pytorch 入门教程——从全连接网络开始。 书中的示例代码在网站页面可以找到。每节末尾会提示“本节代码见 chapterX.py”。 20211006:完成本书第一版。 5 1. 准备章节 1.1 导入 pytorch
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    2022年02月 机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的 距离最大。 距离 7 1.支持向量机概述 背景知识 任意超平面可以用下面这个线性方程来描述: ?T? + ? = 0
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    3 1.5 使用 TensorFlow 以外的后端 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.6 技术支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.7 为什么取名为 Keras . . . . 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.6 基于栈式 LSTM 的序列分类 . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.7 带有状态 (stateful) 的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    jd.com/12954866.html ❑ 联系邮箱(一般问题建议 Github issues 交流):liangqu.long AT gmail.com ❑ 配套视频课程(收费,提供答疑等全服务,比较适合初学者): 深度学习与 TensorFlow 入门实战 深度学习与 PyTorch 入门实战 https://study.163.com/course/courseMai n.htm 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 数据集划分 9.4 模型设计 9.5 正则化 9.6 Dropout 9.7 数据增强 9.8 过拟合问题实战 9.9 参考文献 第 10 章 卷积神经网络 10.1 全连接网络的问题 10.2 卷积神经网络 10.3 卷积层实现 10.4 LeNet-5 实战 10.5 表示学习 10.6 梯度传播 10.7 池化层 10.8 BatchNorm
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2 网络架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.3 全连接层的参数开销 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.4 softmax运算 神经网络与GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6 卷积神经网络 217 6.1 从全连接层到卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.1.1 不变性 13.10.3 与矩阵变换的联系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 13.11 全卷积网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617 13
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标  MLX平台架构 小规模泛化特征 • 模型  DNN > 树模型 > LR 美团超大规模模型应用场景 • 可扩展的机器学习架构  基于Parameter Server架构  数据并行 —— 支持超大规模训练集  模型并行 —— 支持超大规模模型 • 业界千亿级以上的机器学习平台  开源: PaddlePaddle、XDL,etc.  内部: Abacus、XPS, etc. • Online Learning的价值 更快数据反馈、更少资源消耗  分钟级的数据反馈  增量训练、避免batch重训带来的资源消耗 关于Online Learning MLX的模型能力 • 支持千亿级特征、千亿级样本 • 支持计算图模式,模型结构灵活多样  支持推荐、搜索、广告场景常用的深度学习模型  FTRL、FM、FFM、WDL、DCN、DeepFM、MTL等 • Optimizer  FTRL、AdaGr
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    x的比较 类别 Python PyTorch 1+ TensorFlow 2+ 类型 nn.nd Tensor Tensor 自动求导 无 支持,示例 x=torch.tensor([2.0,3.6],requir e s_grad=True) 支持,①对变量求导示例 v=tf.Variable([3.2, 4.3], dtype=tf.float16), #TensorFlow一 般使用梯度磁 运算过程,然后反播磁带自动 得到梯度值。 ②对常量也可求导,需要增加 watch。 ③对tf.Variable可以通过参数 trainable 控制是否可学习,缺 省是True。 是否支持GPU 不支持 支持 支持 常量示例 5.6 torch.tensor([5.6]) a=tf.constant([3.2, 4.3], dtype=tf.float16) 变量示例 x=10.5 torch torch.mm(mat1, mat2, out=None) 其中???1 ∈ ℝ?×?,???2 ∈ ℝ?×?, 输出的??? ∈ ℝ?×? 该函数一般只用来计算两个二维矩阵的矩阵乘法,并且不支持 broadcast操作。 12 1.Tensor张量乘法 2. 三维带batch的矩阵乘法 torch.bmm() 由于神经网络训练一般采用mini-batch,经常输入的时 三维带batch的矩阵,所以提供torch
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    助模型对本单词更好地进行编码。 RNN会将它已经处理过的前面的所有单词/ 向量的表示与它正在处理的当前单词/向量 结合起来。而自注意力机制会将所有相关单 词的理解融入到我们正在处理的单词中。 当我们在编码器#5(栈中最上层编码器)中编码“it”这个单词的时,注意力机 制的部分会去关注“The Animal”,将它的表示的一部分编入“it”的编码中。 23 2.Transformer的工作流程 从微观视角看自注意力机制 Transformer的工作流程 最终的线性变换和Softmax层 解码组件最后会输出一个实数向量。我们如何把 浮点数变成一个单词?这便是线性变换层要做的 工作,它之后就是Softmax层。 线性变换层是一个简单的全连接神经网络,它可 以把解码组件产生的向量投射到一个比它大得多 的、被称作对数几率(logits)的向量里。 不妨假设我们的模型从训练集中学习一万个不同 的英语单词(我们模型的“输出词表”)。因此
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope 成为可能。该库是 一个纯 C/C++ 实现,不依赖任何外部库,并且针对 x86 架构提供了 AVX、AVX2 和 AVX512 加速支持。此 外,它还提供了 2、3、4、5、6 以及 8 位量化功能,以加快推理速度并减少内存占用。对于大于总 VRAM 容量的大规模模型,该库还支持 CPU+GPU 混合推理模式进行部分加速。本质上,llama.cpp 的用途在于运行 GGUF(由 GPT 生成的统一格式)模型。欲了解更多详情,请参阅官方 UI(简称 TGW,通常被称为“oobabooga”)是一款流行的文本生成 Web 界面工具,类似 于 AUTOMATIC1111/stable-diffusion-webui 。它拥有多个交互界面,并支持多种模型后端,包括 Transformers 、 llama.cpp(通过 llama-cpp-python 实现)、ExLlamaV2 、AutoGPTQ 、AutoAWQ 、GPTQ-for-LLaMa
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    优惠,他们就会倾向于 多花些钱买鸡蛋。这就是购物车分析的意义所在。 7 1.关联规则概述 置信度: 表示你购买了A商品后,你还会有 多大的概率购买B商品。 支持度: 指某个商品组合出现的次数与总次 数之间的比例,支持度越高表示该组合出现 的几率越大。 提升度: 提升度代表商品A的出现,对商品 B的出现概率提升了多少,即“商品 A 的出 现,对商品 B 的出现概率提升的”程度。 ? ×??????? ? 支持度:??????? = ????(?,?) ? =3/4 9 2.Apriori算法 01 关联规则概述 02 Apriori 算法 03 FP-Growth算法 10 2.Apriori算法 Apriori算法利用频繁项集生成关联规则。它基于频繁项集的子集也 必须是频繁项集的概念。 频繁项集是支持值大于阈值(support)的项集。 如果某个项集是频繁的,那么它的所有子集也是频繁的。 11 2.Apriori算法 算法流程 输入:数据集合D,支持度阈值? 输出:最大的频繁k项集 1)扫描整个数据集,得到所有出现过的数据,作为候选频繁1项集。k=1,频繁0项集为空集。 2)挖掘频繁k项集 a) 扫描数据计算候选频繁k项集的支持度 b) 去除候选频繁k项集中支持度低于阈值的数据集,得到频繁k项集。如果得到的频繁k项集 为空,则直接返回频繁k-1
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
共 53 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
连接神经网络神经网神经网络实战pytorch机器学习课程温州大学09支持向量Keras基于Python深度PyTorch深度学习动手v2超大大规规模大规模超大规模美团应用建平03入门13TransformerAI模型千问qwen中文文档12关联规则
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩