积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部中文(简体)(24)英语(1)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    深度循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 9.3.1 函数依赖关系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 9.3.2 简洁实现 . . 这些的细节通常会被深度学习 框架的高级抽象隐藏起来。特别是在基础教程中,我们希望读者了解在给定层或优化器中发生的一切。在这 些情况下,我们通常会提供两个版本的示例:一个是我们从零开始实现一切,仅依赖张量操作和自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 要保存到包 中的任何代码块,比如一个函数、一个类或者多个导入,我们都会标记为#@save。我们在 16.6节 中提供了这 些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项: #@save import collections import hashlib import math import os import random import re import
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 13. 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    代表算法有AR, ARIMA 基于深度学习的 时间序列预测 ⚫ 利用多维时间序列之间的 信息 ⚫ 对变周期序列,多维空间 依赖序列预测较弱 ⚫ 代表算法有RNN,LSTM 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and Recurrent-skip layer 捕捉长期宏观依赖和周期性信息 ⚫ Autoregresssive 叠加线性比例关系 Modeling Long- and Short-Term Temporal Patterns
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 都是用什么来完成这系列的任务 的呢? 5 1.Transformer介绍 Seq2Seq任务 参数少:相比于 CNN、RNN ,其复杂度更小,参数也更少。所以对算力的要求 也就更小。 2.速度快:Attention 解决了 RNN及其变体模型不能并行计算的问题。Attention机 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head Attention Add
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    heano,或者 CNTK。我们 推荐 TensorFlow 后端。 • TensorFlow 安装指引。 • Theano 安装指引。 • CNTK 安装指引。 你也可以考虑安装以下可选依赖: • cuDNN (如果你计划在 GPU 上运行 Keras,建议安装)。 • HDF5 和 h5py (如果你需要将 Keras 模型保存到磁盘,则需要这些)。 • graphviz 和 pydot 为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint, Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版 本上,你需要再额外安装 libhdf5: sudo apt-get install libhdf5-serial-dev 如果你不确定是否安装了 max_queue_size: 生成器队列的最大尺寸。 • workers: 使用的最大进程数量。 • use_multiprocessing: 如果 True,则使用基于进程的多线程。请注意,因为此实现依赖于多 进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。 • shuffle: 是否在每轮迭代之前打乱 batch 的顺序。只能与 Sequence (keras.utils
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    requires_grad属性 requires_grad属性默认为False,也就是Tensor变量默认是不需要求导的。 如果一个节点的requires_grad是True,那么所有依赖它的节点 requires_grad也会是True。 换言之,如果一个节点依赖的所有节点都不需要求导,那么它的 requires_grad也会是False。在反向传播的过程中,该节点所在的子图会被 排除在外。 21 2. Autograd自动求导 Autograd自动求导 Function类 我们已经知道PyTorch使用动态计算图(DAG)记录计算的全过程,DAG的节 点是Function对象,边表示数据依赖,从输出指向输入。因此Function类 在PyTorch自动求导中位居核心地位,但是用户通常不会直接去使用。 每当对Tensor施加一个运算的时候,就会产生一个Function对象,它产生 运算的结果,记录运算的发生,并且记录运算的输入。Tensor使用 02 Autograd自动求导 03 神经网络 04 训练一个分类器 27 3. 神经网络 可以使用torch.nn包来构建神经网络. 你已知道autograd包,nn包依赖autograd 包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该 方法返回output。 典型的神经网络 28  神经网络关键组件及相互关系
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤

    peewee Flask-SQLAlchemy 快速入门 Flask-SQLAlchemy 快速入门 搭建 AI SaaS 理论:10 分钟快速开发 AI SaaS 安装依赖 requirements.txt 安装依赖 requirements.txt 测试 flask 是否能启动 $ python manage.py 扩展启动脚本 manage.py 实现 AI 流水线 ai_pipeline ai_pipeline.py 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS “Hello TensorFlow” Try it! 交付 AI SaaS:10 分钟快速掌握容器部署 更新依赖 requirements.txt 为 AI SaaS 编写 Dockerfile 为 AI SaaS 构建 Docker 镜像(TF 容器外) $ docker build –t tf2-ai-saas
    0 码力 | 54 页 | 6.30 MB | 1 年前
    3
  • pdf文档 搜狗深度学习技术在广告推荐领域的应用

    任一模型的输出作为另一模型的特征输入 • 实现方法复杂,模型之间有依赖关系 • 实验方案较多,改进空间较大 模型融合 模型融合的工程实现 • 可支持多个不同模型的加载和计算 • 可支持模型之间的交叉和CTR的bagging • 可通过配置项随时调整模型融合方案 • 避免不必要的重复操作,减少时间复杂度 目标 • 模型本身也看做一个抽象特征 • 模型特征依赖于其它特征,通过计算得到新的特征 • 模型特征输出 多 机 多 卡 GPU集群,优化 训练效率,提高 加速比 现状和计划 现状  已经实现LR+DNN融合模型的上线,收益较好  受限于线上计算资源,模型复杂度有限  线下训练流程有依赖,繁琐易出错 计划  线上服务拆分,独立出深度学习计算模块,采用低功耗GPU加速  支撑更宽、更深、更复杂的网络结构  采用Wide & Deep,线下训练流程解耦 Wide & Deep
    0 码力 | 22 页 | 1.60 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    推理方面会更加完善与方便,加强支持移动端,嵌入式端等应 用场景,相信掌握 Pytorch 框架的开发技术人才也会得到丰厚 回报。 1.2 环境搭建 Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK, 只 要 有 了 Python 语 言 包 支 持, 无 论 是 在 windows 平台、ubuntu 平台还是 Mac 平台都靠一条命令 行就可以完成安装。首先是安装 的包支持,第二行表示版本查询, 第三行是执行结果(GPU 版本)。 现在很多开发者喜欢使用 Ubuntu 开发系统,在 Ubuntu 系统 下如下正确安装与配置 Pytorch,第一步同样是安装 python 语言依赖包 Python3.6,主要是执行一系列的安装命令行,具 体步骤如下: 1. 导入第三方软件仓库 sudo add-apt-repository ppa:jonathonf/python-3.6 /usr/bin/ python 5. 检查与验证 zhigang@ubuntu:~$ python -V Python 3�6�5 成功完成上述五个步骤的命令行执行就完成了 Python 语言包 依赖安装,然后安装 Pytorch 框架,CPU 版本执行命令行如下: pip3 install torch==1.9.0+cpu torchvision==0.10.0+cpu torchaudio==0
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdf

    第一季a唐唐神吐槽:最作死的女神 184 3 3 % 语k h国达r秀震惊全场 h国好声音李安1+岁参加澳洲达r秀时震惊全场的表演 % % 3 长短距离依赖 潜规则女秘n 职场大尺度虐恋激情电影《错爱,爱错》(性感女秘n欲望潜规则男c司_ 1 1 % 长短距离依赖 日本广岛原子弹爆炸 100810C廣島C原子彈爆炸後的日子C寰宇地理C13TB 3 3 % 语k模型——举例 �������������
    0 码力 | 24 页 | 9.60 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    准备模型开发环境 • 生成验证码数据集 • 输入与输出数据处理 • 模型结构设计 • 模型损失函数设计 • 模型训练过程分析 • 模型部署与效果演示 第六部分 目录 准备模型开发环境 第三方依赖包 数据集生成 • Pillow • captcha 模型可视化 • pydot 模型服务部署 • flask $ pip install Pillow captcha pydot flask pydot pydot 是用纯 Python 实现的 GraphViz 接口,支持使用 GraphViz 解析和存储 DOT语言 (graph description language)。其主要依赖 pyparsing 和 GraphViz 这两个工具库。 pyparsing:仅用于加载DOT文件,在 pydot 安装期间自动安装。 GraphViz:将图形渲染为PDF,PNG,SVG等格式文件,需独立安装。
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
动手深度学习v213杨赛赛基于多维时间序列预测数据数据机房中应用机器课程温州大学TransformerKerasPython03PyTorch入门TensorFlow快速实战业务落地实现货架洞察Web搜狗技术广告推荐领域OpenVINO开发系列教程第一一篇第一篇Qcon北京2018视频搜索实践刘尚pdf验证验证码识别
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩