积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(35)机器学习(35)

语言

全部中文(简体)(34)英语(1)

格式

全部PDF文档 PDF(35)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 35 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    激光雷达 普通手机摄像头也可作为传感器 双目摄像头 微软Kinect彩色-深度(RGBD)传感器 手机上的惯性传感器(IMU) SLAM运行结果 • 设备根据传感器的信息 • 计算自身位置(在空间中的位置和朝向) • 构建环境地图(稀疏或者稠密的三维点云) 稀疏SLAM 稠密SLAM SLAM系统常用的框架 输入 • 传感器数据 前台线程 • 根据传感器数据进行跟踪求解, 实时恢复每个时刻的位姿 Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍 • 混合现实:微软HoloLens HoloLens融合了场景位置感知和头盔显示技术,并提供了完整的软硬件解决方案。 Hololens部分传感器 左右双目+前视RGB摄像头+深度传感器 Hololens宣传视频 视觉SLAM • 主要传感器 • 单目摄像头 • 如何将不同子序列上的相同特征点高效地匹配上? • 如何高效地进行全局优化,消除重建漂移问题? VisualSFM 结果 ENFT:高效的非连续帧特征跟踪 基于两道匹配的连续帧跟踪 • 抽取SIFT特征 • 第一道匹配:比较描述量 Global distinctive 平面运动分割 • 估计若干个平面运动 • 使用第一道匹配得到的内点匹配对(inlier matches) Alignment
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    经典算法与深度学习 在外卖物流调度中的应用 SPEAKER / 徐明泉 百度外卖首席架构师 引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 • 外卖订单的智能 调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 外卖订单智能调度系统发展历程 6 人工派单模式 • 调度员根据订单地址和骑士 位置来进行订单分配 • 人力调度派单峰值为每人 800单/天 调度 系统 3.0 云端分组派单模式 A 组 B 组 • 系统综合考虑各因素进行 订单分组,然后再指派给 合适的骑士 订单云端分组 • 调度系统先对骑士和订单组(根据骑士的位置、身上的单量 等)进行打分,得到订单组和骑士的打分矩阵,然后根据业 务需求优先分配指定订单,其他的则根据KM算法找到骑士和 订单的最优分配方案 KM算法 (1) 初始化可行标杆 (2) 用匈牙利算法寻找完备匹配 (3) 若未找到完备匹配则修改可行标杆 (4) 重复(2)(3)直到找到相等子图的完备匹配 供需平衡 13 5.1 配送时长预估模型
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 10.6 自注意力和位置编码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 10.6.1 自注意力 . . . . . . . 408 10.6.2 比较卷积神经网络、循环神经网络和自注意力 . . . . . . . . . . . . . . . . . . . . . 409 10.6.3 位置编码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 10.7 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 10.7.2 基于位置的前馈网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 10.7.3 残差连接和层规范化 .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    别。图片识别是最早成功应用深度学习的任务之一,经典的网络模型有 VGG 系列、 ResNet 系列、EfficientNet 系列等。 目标检测(Object Detection) 是指通过算法自动检测出图片中常见物体的大致位置,通 常用边界框(Bounding box)表示,并分类出边界框中物体的类别信息,如图 1.15 所示。常 见的目标检测算法有 RCNN、Fast RCNN、Faster RCNN、Mask RCNN、SSD、YOLO、 −(cos2 ? + cos2 ?)2来观察梯度的性质,如图 2.6 所示,图中??平面的红色箭头的长度表 示梯度向量∇?的模,箭头的方向表示梯度向量∇?的方向。可以看到,箭头的方向总是指向 当前位置函数值增速最大的方向,函数曲面越陡峭,箭头的长度也就越长,梯度的模也越 预览版202112 2.2 优化方法 5 大。 图 2.6 函数及其梯度向量② 通过上面的例子,相信能直观地感受到,函数 , 从而保证了模型的泛化能力。 图 3.2 MNIST 数据集样例图片 现在来讨论图片的表示方法。一张图片包含了ℎ行(Height/Row),?列(Width/Column), 每个位置保存了像素(Pixel)值,像素值一般使用 0~255 的整形数值来表达颜色强度信息, 例如 0 表示强度最低,255 表示强度最高。如果是彩色图片,则每个像素点包含了 R、G、 B 三个通道的强度
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Keras.io。 Keras 兼容的 Python 版本: Python 2.7-3.6。 1.2 指导原则 • 用户友好。Keras 是为人类而不是为机器设计的 API。它把用户体验放在首要和中心位置。 Keras 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户 操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全 epoch 训练损失和评估值,以及验证 集损失和评估值的记录(如果适用) 。 异常 • RuntimeError: 如果模型从未编译。 • ValueError: 在提供的输入数据与模型期望的不匹配的情况下。 4.2.3.3 evaluate evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None epoch 训练损失和评估值,以及验证 集损失和评估值的记录(如果适用) 。 异常 • RuntimeError: 如果模型从未编译。 • ValueError: 在提供的输入数据与模型期望的不匹配的情况下。 4.3.3.3 evaluate evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    • 亚马逊(Amazon/A9)电子商务搜索引擎中, 深度学习还在实验阶段, 尚未进入生产线。 8 • 搜索数值矢量化  传统搜索基于文字匹配, 商品包含搜索词或者不包含搜索词  利用深度学习技术, 将搜索词和商品全部数值矢量化, 将文字匹配转化为数值矢量计算  词语矢量化是进一步进行各种深度学习的基础。 • 矢量化模型介绍  Mikolov(Google员工)等人2013发表了两篇关于Word2Vec的文章, 产品类别过滤 产品频率过滤 矢量转换回商 品 14 原型评测结果 矢量化搜索引擎与易购传统引擎搜索效果对比 (2016-07-25测试结果) 15 • 该技术不仅召回与搜索词完全匹配的结果,还可召回与搜索词文本不匹配、但含义近似的结果。 效果示例 如:经测评,当搜索词为“松下筒灯”, 易购网站返回6个相关结果, 美研方案返回64个相关结果 现有方案 原型系统 16 • 首先进行词语的矢量化
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    从编码器输入的句子首先会经过一个自注意力(self-attention)层,这层帮助编码器在对每 个单词编码时关注输入句子的其他单词。 自注意力层的输出会传递到前馈(feed-forward)神经网络中。每个位置的单词对应的前馈 神经网络都完全一样(译注:另一种解读就是一层窗口为一个单词的一维卷积神经网络)。 解码器中也有编码器的自注意力(self-attention)层和前馈(feed-forward)层。除此之外, 中最长句子的长度。 20 2.Transformer的工作流程 将输入序列进行词嵌入之后,每个单词都会流经编码器中的两个子层。 Transformer的一个核心特性,在这里 输入序列中每个位置的单词都有自己 独特的路径流入编码器。在自注意力 层中,这些路径之间存在依赖关系。 而前馈(feed-forward)层没有这些依赖 关系。因此在前馈(feed-forward)层时 可以并行执行各种路径。 什么是查询向量Q、键向量K和值向量V? 计算得分 分数除以8,然后通过softmax传递结果。 将每个值向量乘以softmax分数(这是 为了准备之后将它们求和)。 对加权值向量求和,然后即得到自注 意力层在该位置的输出。 Attention(?, ?, ?) = softmax ??? ?? ? 25 2.Transformer的工作流程 通过矩阵运算实现自注意力机制 第一步是计算查询矩阵、键矩阵和值矩阵。为此,我们将
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 9 模型思路 2.模型介绍 1.图片切分为patch 2.patch转化为embedding 3.位置embedding和tokensembedding相加 4.输入到Transformer模型 5.CLS输出做多分类任务 10 先将图片分成NxN的patch块(原始论文是16x16) pa 2.模型介绍 12 提取特征 2.模型介绍 13 1.将位置编码信息加入提取的特征 2.模型介绍 14 位置编码信息对准确率的影响 2.模型介绍 结论:编码有用,但是怎么编码影响不大,干脆用简单的得了 2D(分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的 位置编码也没啥太大用 15 位置编码 2.模型介绍 16 将 3) 的 结 果 喂 入 标 准 模型介绍 21 左图展示了模型学习到的图嵌入,中图展示了学习到的位置嵌入,右图展示了不同层注意 力的平均距离。 2.模型介绍 22 加入位置信息的原因 如下图所示,将左图的patch打乱,则两个图是不同的,但 对于Transformer的最后一层来说会得到相同的特征(认为是 一个图),为了让其能够识别是两个图,加入位置信息(使 两个图不一样)。 2.模型介绍 23 Patch 打平的具体做法
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《深度学习在微博信息流排序的应用》-刘博

    • conitnues特征 • one-hot 表示 • 假设检验方式 • 相关系数评估 • 特征组合 • GBDT+互信息——有效挖掘 非线性特征及组合 皮尔逊相关系数特征评估 标签匹配度特征相关系数特征评估 样本采集 Ø 存在问题 • 头部效应 • 实时反馈类收集与在线存在差异性 Ø 解决方案 • 正负样本比例严重失衡 • 对头部曝光进行降采样,长尾曝光上采样 • 数据对比分析 算法架构 互动行为 点击行为 阅读行为 能力标签 兴趣标签 亲密度 自然属性 账号属性 用户特征 关键词 类型属性 topic 内容标签 内容质量 内容特征 组合特征 标签匹配度 用户互动率 协同特征 实时互动率 app互动率 微博内容 关注数据 用户信息 视觉标签 打码日志 社交关系 用户特征 发博流 互动流 曝光流 模型服务 模型训练 模型优化
    0 码力 | 21 页 | 2.14 MB | 1 年前
    3
  • pdf文档 Chatbots 中对话式交互系统的分析与应用

    Messenger •Microsoft Tay IR-Bot: 智能检索机器人 IR-Bot:检索问答系统 IR-Bot:深度学习 • 句子表示、QA匹配 基于深度学习的智能问答 IR-Bot:深度学习 • 句子表示、QQ匹配 Semantic Question Matching with Deep Learning Task-Bot: 任务对话机器人 Task-Bot: task-oriented
    0 码力 | 39 页 | 2.24 MB | 1 年前
    3
共 35 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
复杂环境视觉同时定位地图构建经典算法人工智能人工智能外卖物流调度应用动手深度学习v2PyTorch深度学习Keras基于Python电子商务电子商务机器课程温州大学13Transformer14VisionViTQCon北京2018微博信息信息流排序刘博Chatbots对话交互系统分析
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩