积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部中文(简体)(21)英语(1)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.074 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 进行实现。考虑到本人能力有限、行文仓促,可 以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 Github Issues 页面提交: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    ������������������������������������������������������������������������������������� 9 1.5.2 线性回归代码演示 ������������������������������������������������������������������������������������������������ Pytorch 的的历史与发展,主要模 块构成与基础操作代码演示。重点介绍 Pytorch 的各个组件、编程方式、环境 搭建、基础操作代码演示。本章对有 Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 iv 5.1.3 在前向传播函数中执行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.4 效率 . . . . . . . . . . . Adadelta算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.9.2 代码实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.10 Adam算法 14.3.5 小批量加载训练实例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 14.3.6 整合代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 14.4 预训练word2vec
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM device_map="auto", attn_implementation="flash_attention_2", ) 为了解决下载问题,我们建议您尝试从 ModelScope 进行下载,只需将上述代码的第一行更改为以下内容: from modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2 图像分类模型的示例代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 13.2.1 使用 ResNet50 进行 ImageNet 详细配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 14.4 使用抽象 Keras 后端编写新代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.5 后端函数 . . . . . . . . . . . . . 请求新功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 21.4 请求贡献代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 21.5 Pull Requests
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    pytroch 搭建一个有模有样的神经网络系统了。 几年前,我在 Mooc 的《人工智能实战——Tensorflow 笔记》这门课上入门了 tensorflow,我 很喜欢这种讲授的风格。尽管这门课讲到后面,代码量也因为过于巨大从而导致上课节奏不好控 制,但它的目的达到了——学习者可以快速入门 tensorflow。而后来,因为很多项目的源码都是基 于 pytorch 的,我也开始转战 pytorch。 杂化,而是用到什么就讲什么。本书不可避免要 参考 [2] 的讲解方式,但我们对讲解顺序和内容,以及程序代码都做了大量的改进。说了那么多, 总之,我们的目标是写一个最好的最容易上手的 pytorch 入门教程——从全连接网络开始。 书中的示例代码在网站页面可以找到。每节末尾会提示“本节代码见 chapterX.py”。 20211006:完成本书第一版。 5 1. 准备章节 1.1 导入 有时候我们希望将训练了一定轮数的模型参数保存起来,这个时候我们就需要保存和恢复模 型了。 model.state_dict() 函数可以得到模型的状态字典,里面包含了模型的参数权重与 bias 等信 息,我们可以用下面的代码来保存和恢复模型: # 保 存 模 型 torch . save ( model . state_dict () , path ) # 恢 复 模 型 model . load_state_dict
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-04机器学习-朴素贝叶斯

    副教授 2 本章目录 01 贝叶斯方法 02 朴素贝叶斯原理 03 朴素贝叶斯案例 04 朴素贝叶斯代码实现 3 1.贝叶斯方法 01 贝叶斯方法 02 朴素贝叶斯原理 03 朴素贝叶斯案例 04 朴素贝叶斯代码实现 4 1.贝叶斯方法-背景知识 先验概率: 后验概率: 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为 基础,故统称为贝叶斯分类。 )的估计,得到联合概率分布: ?(?, ?)=?(?|?) ?(?) 7 2.朴素贝叶斯原理 01 贝叶斯方法 02 朴素贝叶斯原理 03 朴素贝叶斯案例 04 朴素贝叶斯代码实现 8 判别模型和生成模型 判别模型(Discriminative Model) 生成模型(Generative Model) 由数据直接学习决策函数Y=f(X)或者条件概率分 布P(Y =1 ? ? ? ? = ? ? ? = ?? ? ? = ?? 18 3.朴素贝叶斯案例 01 贝叶斯方法 02 朴素贝叶斯原理 03 朴素贝叶斯案例 04 朴素贝叶斯代码实现 19 3.朴素贝叶斯案例 假设我们正在构建一个分类器,该分类器说明文本是否与运动(Sports)有 关。我们的训练数据有5句话: 文本 标签 A great game Sports
    0 码力 | 31 页 | 1.13 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    模型训练策略 本章目录 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 3 1.背景知识 03 模型训练策略 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 4 1.背景知识 图片分类的原理 5 2017年google的机器翻译团队在 NIPS上发表了Attention 是Transformer的encode网络。 1.背景知识 8 2.模型介绍 03 模型训练策略 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 9 模型思路 2.模型介绍 1.图片切分为patch 2.patch转化为embedding 3.位置embedding和tokensembedding相加 4.输入到Transformer模型 即patch的个数。 2.模型介绍 24 3.模型训练策略 03 模型训练策略 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 25 3.模型训练策略 训练策略 模型在Dataset A上预训练,在Dataset B上精调,在Dataset B上评估 26 数据集介绍 在ImageNet(small)预训练,ViT的效果低于Resnet。
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    黄海广 副教授 2 本章目录 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 3 1.分类问题 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 4 监督学习的最主要类型 ✓ 分类(Classification) ✓ 身高1.85m,体重100kg的男人穿什么尺码的T恤? 步骤:①->②->③->…… ① ② ③ 一对多 (一对余) 7 2.Sigmoid函数 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 8 ? ? 代表一个常用的逻辑函数(logistic function)为?形函数(Sigmoid function) 则:? ? = ? ? = 1 1+?−? 合起来,我们得到逻辑回归模型的假设函数: (1 + ?−?)) = ?(?)(1 − ?(?)) ? ? 11 3.逻辑回归求解 01 分类问题 02 Sigmoid函数 03 逻辑回归求解 04 逻辑回归代码实现 12 3.逻辑回归求解 假设一个二分类模型: ?(? = 1|?; ?) = ℎ(?) ?(? = 0|?; ?) = 1 − ℎ(?) 则: ?(?|?; ?) = (ℎ(?))
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    Web的⽅式查看作业的运⾏状况和作业日志� • 在线查看Tensorboard� • HistoryServer支持查看结束作业的日志和状态信息� • 控制已有的TensorFlow作业的迁移成本(最多改三⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo 启动Tensorboard服务:� TensorFlow on Yarn技术细节揭秘 降低已有tensorflow程序迁移成本:� (1)单机模式 不需要修改代码 (2)分布式模式(最多修改三行代码) cluster = !.train.ClusterSpec(json.loads(os.environ[“TF_CLUSTER_DEF”])) job_name ResourceManager统计计数并按数量 分配 ResourceManager统计计数并按数量 分配 作业必须占用CPU资源 作业可以不需要GPU资源 系统自动分配物理CPU核心 需要知道具体GPU卡号,代码分配 计算任务到指定GPU设备 设备亲和性影响较小 设备亲和性影响较大 TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:�
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorch深度学习OpenVINO开发实战系列教程第一一篇第一篇动手深度学习v2AI模型千问qwen中文文档Keras基于Python连接神经网络神经网神经网络pytorch机器课程温州大学04朴素贝叶贝叶斯14VisionTransformerViT03逻辑回归TensorFlowonYarn遇上数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩