积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(27)机器学习(27)

语言

全部中文(简体)(26)英语(1)

格式

全部PDF文档 PDF(27)
 
本次搜索耗时 0.109 秒,为您找到相关结果约 27 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    ������������������������������������������������������������������������������������� 9 1.5.2 线性回归代码演示 ������������������������������������������������������������������������������������������������ Pytorch 的的历史与发展,主要模 块构成与基础操作代码演示。重点介绍 Pytorch 的各个组件、编程方式、环境 搭建、基础操作代码演示。本章对有 Pytorch 开发经验的读者来说可以直接跳 过;对初次接触 Pytorch 的读者来说,通过本章学习认识 Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 好了,下面就让我们来一起开启这段 Pytorch 框架的深度学习破冰之旅。 PyTorch + OpenVINO
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 iv 5.1.3 在前向传播函数中执行代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1.4 效率 . . . . . . . . . . . Adadelta算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.9.2 代码实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 11.10 Adam算法 14.3.5 小批量加载训练实例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 14.3.6 整合代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 14.4 预训练word2vec
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 13. 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    不够智能 的空调控 制系统 空调缺乏对整个环境 的全面感知 空调对温度的控制 存在延迟 多 维 感 知 温 度 预 测 控 制 2. 研究目标 对数据机房的温度进行预测 ⚫ 根据机房的历史运行数据变化预测未来 XX 分钟机房的温度值,从而实现空调的预测控制。 风机状态 服务负载 天气状况 室外温度 室外湿度 门禁状态 时序数据 温度预测 预测控制 节能调节 3. 研究内容 ⚫ with Deep Neural Networks Guokun Lai, Wei-Cheng Chang, Yiming Yang, Hanxiao Liu LSTNet Python 代码实现 Convolutional Layer Recurrent and Recurrent- skip laye Fully Connected Layer Autoregresssive R^2:97% 模型部署和自动更新 4. 后续工作 结合温度预测模型对空调进行节能控制 ⚫ 利用温度预测模型实现强化学习节能控制 • 强化学习探索策略的制定 • 强化学习模拟实验环境 项目数据及源代码地址: http://uee.me/cu9GV THANK YOU momodel.ai
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 深度学习—深入理解人工智能算法》一书 进行二次撰写,代码部分完全基于 PyTorch 进行实现。考虑到本人能力有限、行文仓促,可 以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 Github Issues 页面提交: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book/issues ❑ 本书主页,以及源代码,电子书下载,正式版也会在此同步更新: https://github.com/dragen1860/Deep-Learning-with-PyTorch-book ❑ 姊妹书《TensorFlow 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数 据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    操作在数学上(和概念上)更清晰。只要明确定义了符号,用于矩阵的列或行的表示方式并没有通 用约定。 2.矩阵乘法 两个矩阵相乘,其中 and ,则: 其中: 请注意,为了使矩阵乘积存在, 中的列数必须等于 中的行数。有很多方法可以查看矩阵乘法,我们 将从检查一些特殊情况开始。 2.1 向量-向量乘法 给定两个向量 , 通常称为向量内积或者点积,结果是个实数。 注意: 始终成立。 给定向量 , 和 行之间的矩阵 向量积。公式如下: 这里第 行的 由左边的向量的矩阵向量乘积给出: 将矩阵乘法剖析到如此大的程度似乎有点过分,特别是当所有这些观点都紧跟在我们在本节开头给出的 初始定义(在一行数学中)之后。 这些不同方法的直接优势在于它们允许您在向量的级别/单位而不是标量上进行操作。 为了完全理解线 性代数而不会迷失在复杂的索引操作中,关键是要用尽可能多的概念进行操作。 实际上所有的 否则,向量是线性无关的。 例如,向量: 是线性相关的,因为: 。 矩阵 的列秩是构成线性无关集合的 的最大列子集的大小。 由于术语的多样性,这通常简称 为 的线性无关列的数量。同样,行秩是构成线性无关集合的 的最大行数。 对于任何矩阵 ,事实证明 的列秩等于 的行秩(尽管我们不会证明这一点),因此两个量统称为 的秩,用 表示。 以下是秩的一些基本属性: 对于 , ,如果 ,则: 被称作满秩。 对于
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05深度学习-深度学习实践

    用步骤3中选出的模型对测试 集计算得出推广误差(代价函数 的值) 5 数据集制作 PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割 成小batch,并在训练过程中进行数据预处理。 6 数据集制作 class MyDataset(Dataset): def __init__(self, data): self.data = data std=[0.229, 0.224, 0.225]) # 标准化 ]) # 加载图像数据 img = Image.open('image.jpg').convert('RGB') # 对图像进行数据增强 img_aug = transform(img) # 可以将数据增强的过程添加到数据集的加载器中 dataset = datasets.ImageFolder('data', transform=transform)
    0 码力 | 19 页 | 1.09 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    任务的数据增强通常以下方法实现: (1) 随意翻转、镜像。 (2) 随意裁剪。 (3) 扭曲变形图片。 (4) 颜色转换,然后给R、G和B三个通道上 加上不同的失真值。产生大量的样本,进 行数据增强。 28 偏差和方差 方差Variance: 描述的是预测值的变化范围,离散程度, 也就是离其期望值的距离。方差越大,数 据的分布越分散,如右图右列所示。 偏差Bias: 描述的是预测值(估计值)的期望与真实
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-时间序列总结

    的时间单位进行位移操作, period = pd.Period('2017/6') period + 1 Period('2017-07', 'M') 35 创建时期对象 如果具有相同频率的两个Period对象进行数 学运算,那么计算结果为它们的单位数量。 pd.Period('2017/6') other_period = pd.Period(201201, freq='M' ) period - other_period
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    因而使得AI表现更像狭义专家,并非通才。 GPT-2要 解决和优 化的问题 ◼ GPT-2(2019.2)在GPT-1的基础上进行诸多改进,实现执行任务多样性,开始学习在不需要明确监督的情 况下执行数量惊人的任务 ✓ 在GPT-2阶段,OpenAI去掉了GPT-1阶段的有监督微调(fine-tuning),成为无监督模型。 ✓ 大模型GPT-2是一个1.5B参数的Transformer,在其
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ModelScope 要快速上手 Qwen1.5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM device_map="auto", attn_implementation="flash_attention_2", ) 为了解决下载问题,我们建议您尝试从 ModelScope 进行下载,只需将上述代码的第一行更改为以下内容: from modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式 推理和服务的快速且易于使用的框架。以 下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 27 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchOpenVINO开发实战系列教程第一一篇第一篇动手深度学习v213杨赛赛基于多维时间序列预测数据数据机房中应用深度学习机器课程温州大学02数学基础回顾CS229LinearAlgebra05实践总结12自然语言自然语言处理嵌入AI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩