积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部中文(简体)(15)英语(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.064 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-线性代数回顾

    1 2021年07月 机器学习-线性代数回顾 黄海广 副教授 2 目录 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 3 1.行列式 01 行列式 02 矩阵 03 向量 06 二次型 05 矩阵的特征值和特征向量 04 线性方程组 4 (1) −1, ?∗正定; |?| > 0, ?可逆;??? > 0,且|???| > 0 。 6.二次型 38 参考文献 1. https://github.com/fengdu78 2. 《线性代数》,同济大学 39 谢 谢!
    0 码力 | 39 页 | 856.89 KB | 1 年前
    3
  • pdf文档 基本数据类型

    基本数据类型 主讲人:龙良曲 All is about Tensor python PyTorch Int IntTensor of size() float FloatTensor of size() Int array IntTensor of size [d1, d2 ,…] Float array FloatTensor of size [d1, d2, …] string
    0 码力 | 16 页 | 1.09 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    斐 Χ χ chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 29 3. 机器学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 30 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 38 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ + ? ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 39 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵,简记为?, 或者
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    斐 Χ χ chi khai 喜 Ψ ψ psi psai 普西 Ω ω omega omiga 欧米 30 3. 深度学习的背景知识-数学基础 高等数学 导数、微分、泰勒公式…… 线性代数 向量、矩阵、行列式、秩、线性方程组、特征值和特征向量…… 概率论与数理统计 随机事件和概率、概率的基本性质和公式、常见分布、期望、协 方差…… 31 高等数学-导数 导数(Derivative),也叫导函数值。又名微商, 1 ?! ?? + ?(??) 2) ln(1 + ?) = ? − 1 2 ?2 + 1 3 ?3 − ⋯ + (−1)?−1?? ? + ?(??) 高等数学-泰勒公式 39 线性代数-行列式 设? = ??? ?×?,则:??1??1 + ??2??2 + ⋯ + ?????? = ቊ ? , ? = ? 0, ? ≠ ? 或?1??1? + ?2??2? + ⋯ + ? ? ∈ ℝ?×?, det(??) = det(?)det(?) ⚫ 当且仅当?为奇异方阵时,det(?) = 0 ⚫ 当?为非奇异方阵时,det(?−1) = 1/det(?) 40 线性代数-矩阵 矩阵:? × ?个数???排成?行?列的表格 ?11 ?12 ⋯ ?1? ?21 ?22 ⋯ ?2? ⋯ ⋯ ⋯ ⋯ ⋯ ??1 ??2 ⋯ ??? 称为矩阵,简记为?, 或者
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2.2.3 转换为张量格式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 线性代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 关于线性代数的更多信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 微积分 . . . . . . . . . 透彻性,但对初学者来说,这一特性限制了它作为介绍性文本的实用性。 在这本书中,我们将适时教授大部分概念。换句话说,你将在实现某些实际目的所需的非常时刻学习概念。 虽然我们在开始时花了一些时间来教授基础的背景知识,如线性代数和概率,但我们希望你在思考更深奥的 概率分布之前,先体会一下训练模型的满足感。 除了提供基本数学背景速成课程的几节初步课程外,后续的每一章都介绍了适量的新概念,并提供可独立工 作的例子——使用
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 · 线性代数运算 · 傅里叶变换 · 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用,以及核心的科学计算组织如:Lawrence 中的元素可以是任何对象,所以浪费了CPU运算时间和内存。 NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib scatter3D 方法专门用于绘制3维的散点图。 数据归一化(3D) 数据处理:NumPy NumPy 是一个 BSD 开源协议许可的,面向 Python 用户的基础科学计算库,在多 维数组上实现了线性代数、傅立叶变换和其他丰富的函数运算。 X y 创建线性回归模型(数据流图) 创建会话(运行环境) 使用 TensorBoard 可视化模型数据流图 TensorBoard 可视化工具 在数
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 3.9 小结 3.10 参考文献 第 4 章 PyTorch 基础 4.1 数据类型 4.2 数值精度 4.3 待优化张量 4.4 创建张量 预览版202112 4.5 张量的典型应用 4.6 索引与切片 4.7 维度变换 4.8 Broadcasting for epoch in range(5): # 训练 5 个 epoch for batch_idx, (x, y) in enumerate(train_loader): # 按批迭代数据集 # x: [b, 1, 28, 28], y: [512] # 打平操作:[b, 1, 28, 28] => [b, 784]
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    GPU ) , requires_grad(是否需要求导)等设置参数。 1.Tensors张量的概念 9  Tensor与NumPy的函数对比 . 操作类别 Numpy PyTorch 数据类型 np.ndarray torch.Tensor np.float32 torch.float32; torch.float np.float64 torch.float64; torch.double float16) torch.tensor([3.2, 4.3],dtype=torch.float16) x.copy() x.clone() np.concatenate torch.cat 线性代数 np.dot torch.mm 属性 x.ndim x.dim() x.size x.nelement() 形状操作 x.reshape x.reshape(相当于 tensor.contiguous()
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, 缓 存 的 数 据 集 文 件 (如 使 用 get_file() 下 载 的 文 件) 默 认 存 储 在 $HOME/.keras/datasets/ 32) 表明任意批次大小的 32 维向量。 • name: 一个可选的层的名称的字符串。在一个模型中应该是唯一的(不可以重用一个名字 两次)。如未提供,将自动生成。 • dtype: 输入所期望的数据类型,字符串表示 (float32, float64, int32…) • sparse: 一个布尔值,指明需要创建的占位符是否是稀疏的。 • tensor: 可选的可封装到 Input 层的现有 CSVLogger(filename, separator=',', append=False) 把训练轮结果数据流到 csv 文件的回调函数。 支持所有可以被作为字符串表示的值,包括 1D 可迭代数据,例如,np.ndarray。 例 csv_logger = CSVLogger('training.log') model.fit(X_train, Y_train, callbacks=[csv_logger])
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
机器学习课程温州大学线性代数线性代数回顾深度PyTorch入门实战06基本数据类型数据类型01引言动手v2numpy使用总结TensorFlow快速房价预测深度学习03Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩