《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤业务落地篇:实现货架洞察 Web 应用 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 串联 AI 流程理论:商品检测与商品识别 • 串联 AI 流程实战:商品检测与商品识别 • 展现 AI 效果理论:使用 OpenCV 可视化识别结果 • 展现 AI 效果实战:使用 OpenCV 可视化识别结果 • 搭建 AI SaaS 理论:Web 框架选型 • 搭建 AI AI 效果实战:使用 OpenCV 可视化识别结果 “Hello TensorFlow” Try it! 搭建 AI SaaS 理论:Web 框架选型 Python Web 框架 Python Web 框架 - Flask Python Web 框架 - Flask Flask 常用扩展 Flask 项目常见目录结构 启动文件 manage.py 示例 搭建 AI SaaS 理论:数据库0 码力 | 54 页 | 6.30 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 • 信息流 热门流 视频流 关系流 • 推荐流 图片推荐流 正文推荐流 视频推荐流 1 推荐场景 排序损失:DeepFM+Pair-Wise Rank Loss 多目标 融合点击模型和 互动模型 单目标 LR、W&D、 FM和DeepFM 等模型排序 排序损失 针对信息流业务场景,从 点击损失升级到排序损 失,基础模型为 DeepFM,排序损失为 BPR 召 回 排 序 • 深度学习模型训练:WeiLearn 样本库 WeiLearn-深度学习模型训练 CTR样本 自然语言样本 API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 4 深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit RPC服务框架 LR/GBDT DNN/DeepFM/W&D0 码力 | 36 页 | 16.69 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 等均以 PyTorch 为基础开发,可见掌握 PyTorch 框架在人工智能行 业中的重要地位。 本书基于清华大学出版社出版的《TensorFlow 预览版202112 简 要 目 录 人工智能绪论 1.1 人工智能 1.2 神经网络发展简史 1.3 深度学习特点 1.4 深度学习应用 1.5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 10 亿次的浮点运算数 (GFLOPS)的指标变换曲线。可以看到,x86 CPU 的曲线变化相对缓慢,而 NVIDIA GPU 的浮点计算能力指数式增长,这主要是由日益增长的游戏计算量和深度学习计算量等业务 驱动的。 预览版202112 1.3 深度学习特点 9 图 1.12 NVIDIA GPU FLOPS 趋势(数据来自 NVIDIA) 1.3.3 网络规模0 码力 | 439 页 | 29.91 MB | 1 年前3
动手学深度学习 v2.0多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; ;(2)涵盖了现代机器学习的 所有领域,技术深度丰富;(3)在一本引人入胜的教科书中,人们可以在实践教程中找到干净的可运行代码, 并从中穿插高质量的阐述。我们发现了大量关于如何使用给定的深度学习框架(例如,如何对TensorFlow中 的矩阵进行基本的数值计算)或实现特定技术的代码示例(例如,LeNet、AlexNet、ResNet的代码片段),这 些代码示例分散在各种博客帖子和GitHu 这本书将从头开始教授深度学习的概念。有时,我们想深入研究模型的细节,这些的细节通常会被深度学习 框架的高级抽象隐藏起来。特别是在基础教程中,我们希望读者了解在给定层或优化器中发生的一切。在这 些情况下,我们通常会提供两个版本的示例:一个是我们从零开始实现一切,仅依赖张量操作和自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。0 码力 | 797 页 | 29.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 提供从召回到排序全流程的模型解决方案,为业务提供最佳实践; • 提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构 MLX平台架构 • 基于Worker + PS架构搭建 • Worker 模型计算引擎(Engine) 计算图框架(Graph) • 模型计算引擎Engine 模型结构处理 与PS通信交换模型参数 计算图的计算 • 计算图框架Graph 计算逻辑抽象op,通过op组合形成模型结构 提供正向(forward)、反向(backward)、Loss的操作扩展 模型训练框架 • 模型可变计算路径 运行阶段 计算图裁剪 模型训练框架 • 应用场景——离线预计算 模型召回,ANN检索 粗排模型,降低线上计算量 • 分布式Sharding 模型分片存储,支持超大规模模型 数据并行计算,加速Optimizer计算0 码力 | 41 页 | 5.96 MB | 1 年前3
谭国富:深度学习在图像审核的应用腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 02 深度学习技术介绍 人力 减少人工 漏审 技术诉求:自动识别图片或视频中出现的文 字、二维码、logo等内容以及违规人像、淫 秽、血腥、暴力、极端主义、恐怖主义图像 等,方便平台进行违规处理和风险管控。 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 高准确率: 在内部业务上测试,准确率97%,覆 盖80%以上的案例 Ø 腾讯云,承担每天数亿的图像审核, 已经 累计支持上百家客户。 Ø 微云,QQ群,支持视频识别的解决方案, 成熟灵活的产品方案,帮助业务扫除掉互 联网暴力、恐怖内容,有效的降低业务风 险。 l 暴恐识别技术 武装份子 管制刀具 枪支弹药 人群聚集 火灾0 码力 | 32 页 | 5.17 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱从推荐模型的基础特点看 袁镱 腾讯 个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 算法 1. ⾼性能 2. 效果⽆ 损的优化 � Feature 1(基本特点) � Feature 2(数据的时空 特点) � Feature3(机器学习 的特点) 训练框架—基于参数服务器架构的分布式训练框架 TB级模型 分⽚ 存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到0 码力 | 22 页 | 6.76 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 证、ISO9001质量管理体系认证、双软认证等最全面的企业服务资质。 权威认证的人工智能服务,可充分保障客户业务实践与业务安全 l 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 ing-LSTMs/ 1,单元状态丢弃 2,新信息选择 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高 • 常需要分类算法融合提升效果 深度学习(CNN,RNN等) • 端到端,无需大量特征工程 • 框架通用性好,满足多领域需求 • 可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整0 码力 | 46 页 | 25.61 MB | 1 年前3
李东亮:云端图像技术的深度学习模型与应用小水滴·360智能摄像机 视觉大不同 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取 n 人脸检测占用95%计算资源 n 峰值时会达到1500 QPS SACC2017 检测-人脸检测/人形检测 场景多样、人脸小、位置边缘 最早在人脸标准库上LFW达到99.7%的团队之一! SACC2017 输入输出固定,无状态 计算量大、响应->GPU 传输、存储压力 多任务串联 GPU服务框架-图像特点 通用计算(Caffe/Tensorflow/Mxnet) SACC2017 GPU服务框架 人形检测 人脸识别 100台-> 10台服务器 300QPS/台(4*k40) 轮询结果 SACC2017 SACC20170 码力 | 26 页 | 3.69 MB | 1 年前3
《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案方案设计篇:如何设计可落地的AI解决方案 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 行业背景:AI新零售是什么? • 用户需求:线下门店业绩如何提升? • 长期⽬目标:货架数字化与业务智能化 • 短期目标:自动化陈列审核和促销管理 • 方案设计:基于深度学习的检测/分类的AI流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么 新零售——阿里研究院新零售研究报告》 中国零售发展处于初级阶段 ——《C时代 新零售——阿里研究院新零售研究报告》 新零售是什么 ——《C时代 新零售——阿里研究院新零售研究报告》 新零售知识框架 ——《C时代 新零售——阿里研究院新零售研究报告》 数字经济基础设施 ——《C时代 新零售——阿里研究院新零售研究报告》 AI:贯穿新零售全流程 ——《C时代 新零售——阿里研究院新零售研究报告》 用好你的广告位:线下陈列 缺货 凌乱 销量下降 用好你的广告位:线下陈列 有气势! 整齐! 销量上涨! 品牌线下PK 如何脱颖而出? 品牌商线下渠道销售的普遍需求 长期⽬目标:货架数字化与业务智能化 ��������������������������������������������� ����������������������������������������������0 码力 | 49 页 | 12.50 MB | 1 年前3
共 38 条
- 1
- 2
- 3
- 4













