超大规模深度学习在美团的应用-余建平超大规模深度学习在美团的应用 余建平 美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。0 码力 | 41 页 | 5.96 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen0 码力 | 121 页 | 37.75 MB | 1 年前3
谭国富:深度学习在图像审核的应用4000亿QQ空间存量图片,每天空间相册新增6亿 张上传图片 SACC2017 内容审核 - 痛点和诉求 默默承受 自建识别模型 加大审核人力 一旦出现严重违规平 台面临停业整顿风险 昂贵的专业机器、AI专家, 样本不足导致识别模型漏 过模型调优难度大 人力审核疲劳容易发 生漏过,人力招聘、 管理需要耗费不小成 本 识别种类 完备 节约成本 节省审核 人力 减少人工 漏审 技术诉求:自动识别图片或视频中出现的文 识别率超过99% 和95% 1970 受限于 计算能 力,进 入第一 个寒冬 XCON专 家系统出 现,每年 节约4000 万美元 第1阶段:人工智能起步 期 (1956-1980s) 第2阶段:专家系统推 广 (1980s-1990s) 第3阶段:深度学习 (2000s-至今 ) 1997 IBM的 Deep Blue战 胜国际 象棋冠 军 2011 苹果的 Siri问世, 技术上不0 码力 | 32 页 | 5.17 MB | 1 年前3
QCon北京2018-《深度学习在微博信息流排序的应用》-刘博互动模型 点击模型 阅读模型 Score = ?)*+,-./+ ∗ ???? + ?/6)/7 ∗ ???? + ?-,.8 ∗ ???? 特征工程 Ø 特征工程非常重要 • 手动组合——专家知识 • categorical特征 • 离散化/归一化处理 • conitnues特征 • one-hot 表示 • 假设检验方式 • 相关系数评估 • 特征组合 • GBDT+互信息——有效挖掘0 码力 | 21 页 | 2.14 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 本书虽然免费开放电子版,供个人学习使用,但是未经许可,不能用于任何个人或者企 业的商业用途,违法盗版和销售,必究其法律责任。 龙龙老师 Intelligence,简称 AI)是有 望解决此问题的关键技术。 随着深度学习算法的崛起,人工智能在部分任务上取得了类人甚至超人的智力水平, 如在围棋上 AlphaGo 智能程序已经击败人类最强围棋专家之一柯洁,在 Dota2 游戏上 OpenAI Five 智能程序击败世界冠军队伍 OG,同时人脸识别、智能语音、机器翻译等一项 项实用的技术已经进入到人们的日常生活中。现在我们的生活处处被人工智能所环绕,尽 。 但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被 称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过构建庞大复杂 的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题, 就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理 解过程,根本无法通过既定规则模拟实现。为了解决这类问题,一门通过让机器自动从数0 码力 | 439 页 | 29.91 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点0 码力 | 22 页 | 6.76 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波微博在线机器学习和深度学习实践 黄波 @黄波_WB 资深技术专家 2019.5 目录 1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 •0 码力 | 36 页 | 16.69 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文译 著 《 智 能 W e b 算 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得0 码力 | 46 页 | 25.61 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入✓ 机器学习系统通过使用大型数据集、高容 量模型和监督学习的组合,在训练任务方 面表现出色,然而这些系统较为脆弱,对 数据分布和任务规范的轻微变化非常敏感, 因而使得AI表现更像狭义专家,并非通才。 GPT-2要 解决和优 化的问题 ◼ GPT-2(2019.2)在GPT-1的基础上进行诸多改进,实现执行任务多样性,开始学习在不需要明确监督的情 况下执行数量惊人的任务 ✓0 码力 | 44 页 | 2.36 MB | 1 年前3
动手学深度学习 v2.0许多教科书教授一系列的主题,每一个都非常详细。例如,Chris Bishop的优秀教科书 (Bishop, 2006) ,对每 个主题都教得很透彻,以至于要读到线性回归这一章需要大量的工作。虽然专家们喜欢这本书正是因为它的 透彻性,但对初学者来说,这一特性限制了它作为介绍性文本的实用性。 在这本书中,我们将适时教授大部分概念。换句话说,你将在实现某些实际目的所需的非常时刻学习概念。 虽然 mask makers insist that their products,such as N95 respirator masks,can guard against the virus.”(“一些专家报告说面罩的功效是不确定的。然而,口罩制造商坚持他们的产品,如N95口罩,可以预 防病毒。”)还有一个问题“Who say that N95 respirator masks can guard against0 码力 | 797 页 | 29.45 MB | 1 年前3
共 10 条
- 1













