积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)RocketMQ(4)

语言

全部中文(简体)(2)中文(简体)(2)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • RocketMQ
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache RocketMQ 从入门到实战

    消息存储服务器,分为两种角色:Master 与 Slave,上图中呈现的就是 2 主 2 从的部 署架构,在 RocketMQ 中,主服务承担读写操作,从服务器作为一个备份,当主服务器存 在压力时,从服务器可以承担读服务(消息消费)。所有 Broker,包含 Slave 服务器每隔 30s 会向 Nameserver 发送心跳包,心跳包中会包含存在在 Broker 上所有的 topic 的路 由信息。 本文 为:topic@consumeGroup,然后每一个队列一个偏移量。 广播模式的消费进度文件存储在用户的主目录,默认文件全路劲名:${USER_HOM E}/.rocketmq_offsets。 4. 消费模型 RocketMQ 提供了并发消费、顺序消费两种消费模型。 并发消费:对一个队列中消息,每一个消费者内部都会创建一个线程池,对队列中的消 息多线程处理,即偏移量大的消息比偏移量小的消息有可能先消费。 顺序消费:在某一项场景,例如 commitlog 文件中最大的偏移量,以该偏移量向服务端拉取消息;  服务端解析请求,并返回一批数据给客户端; 本文来自『中间件兴趣圈』公众号,仅作技术交流,未授权任何商业行为。 1.4 RocketMQ HA 核心工作机制 < 40  客户端收到一批消息后,将消息写入本地 commitlog 文件中,然后向 Master 汇报拉 取进度,并更新下一次待拉取偏移量;  然后重复第 3
    0 码力 | 165 页 | 12.53 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    先引入官方文档图: 分布式事物是基于二阶段提交的 1) 一阶段,向 broker 发送一条 prepared 的消息,返回消息的 offset 即消息地址 commitLog 中消息偏移量。Prepared 状态消息不被消费 发送消息 ok,执行本地事物分支, 本地事物方法需要实现 rocketmq 的回调接口 2)2) 2) LocalTransactionExecuter , 针对事物消息的处理,消息的第 20 位开始的八位记录是的消息在逻辑队列 中的 queueoffset, 但是针对事物消息为 preparedType 和 rollbackType 的存储的是事物状态 表的索引偏移量 2.2.2 分发事物消息: 分发消息位置信息到 ConsumeQueue : 事物状态为 preparedType 和 rollbackType 的消息 不会将请求分发到 ConsumeQueue 事物状态表是有 MapedFileQueue 将多个文件组成一个连续的队列,它的存储单元是定 长为 24 个字节的数据, tranStateTableOffset 可以认为是事物状态消息的个数,索引偏移量, 它的值是 tranStateTable.getMaxOffset() / TSStoreUnitSize 2.2.4 事物回查 定时回查线程会定时扫描(默认每分钟)每个存储事务状态的表格文件,
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    多少对亍对外提供的访问能力影响有限。 (2). 消息堆积到持丽化存储系统中,例如 DB,KV 存储,文件记彔形式。 当消息丌能在内存 Cache 命中时,要丌可避免的访问磁盘,会产生大量读 IO,读 IO 的吞吏量直接决定了 消息堆积后的访问能力。 评估消息堆积能力主要有以下四点: (1). 消息能堆积多少条,多少字节?即消息的堆积容量。 (2). 消息堆积后,収消息的吞吏量大小,是否会叐堆积影响? IO 压力极大,会导致 IO 写入超时。 文件系统局面需要做以下调优措施 文件系统 IO 调度算法需要调整为 deadline,因为 deadline 算法在随机读情冴下,可以合幵读请求为顺序跳跃 方式,从而提高读 IO 吞吏量。 Ext4 文件系统有以下 Bug,请注意 http://blog.donghao.org/2013/03/20/%E4%BF%AE%E5%A4%8D Byte 4 Byte Message Tag Hashcode 8 Byte 图表 7-1RocketMQ 队列 (1). 所有数据单独存储到一个 Commit Log,完全顺序写,随机读。 (2). 对最终用户展现的队列实际只存储消息在 Commit Log 的位置信息,幵丏串行方式刷盘。 项目开源主页:https://github.com/alibaba/RocketMQ
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 基于Apache APISIX 与RocketMQ 构建云原生一体化架构

    语义支撑 挑战 • Commitlog 格式存储, 统一复制算法 • 不借助外部依赖,提供 状态存储能力 • 单一数据文件,支持面向流的索引及面向 批的索引 • 批量发,批量存,批量读,吞吐提升十倍 • 统一消息,KV 语义,统一 API,提供 状态存储能力 • 流表二象性支持 W r i t e h e r e S o m e t h i n g a b o u t
    0 码力 | 22 页 | 2.26 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
ApacheRocketMQ入门实战消息中间中间件消息中间件原理解析开发指南基于APISIX构建原生一体一体化架构
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩