积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)RocketMQ(11)

语言

全部中文(简体)(8)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • RocketMQ
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 RocketMQ v3.2.4 开发指南

    16 7.2 刷盘策略 .......................................................................................................................................................... 18 7.2.1 异步刷盘 ............ ................................................................................... 18 7.2.2 同步刷盘 ................................................................................................... ................................................................................... 43 14.3 消费速度慢处理方式 ...............................................................................................
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 万亿级数据洪峰下的消息引擎Apache RocketMQ

    订阅消息峰值:数千万条/秒 堆积消息峰值:千亿条 消息中间件核心链路 1.4万亿 万亿洪峰下有哪些问题 机器假死 IO Util,Load飙高 磁盘响应慢 消息大量堆积 网卡故障,甚至流量跑满 磁盘损坏 零点之战:发布消息SLA要求100% 慢请求开始大量增加 分布式系统雪崩 容量不足,单机热点 问题的本质: 可用性无限接近100% 可靠性无限接近100% 可用性 > 可靠性 1 141 146 1. 每秒支撑千万级消息发布 2. 每条消息发布最大响应时间 不超过20ms 3. 每条消息发布平均响应时间 不超过3ms 1.4万亿 分布式慢请求带来的挑战 1.4万亿 消息中间件分布式慢请求解法 01 02 低延迟分布式存储系统 在线熔断机制,秒级隔离 03 容量保障,限流 1.4万亿 低延迟分布式存储系统 – RocketMQ存储 Java Heap PageCache的毛刺解决方案小结 1.4万亿 低延迟分布式存储系统 – PageCache的毛刺解决方案小结 操作系统Page Cache Radix Tree 自旋锁,产生几秒的大毛刺 如果遇到坏盘,可能Block若干分钟,对系统产生致命影响。 操作系统Page Cache Radix Tree 每个Page的阻塞锁,产生几百毫秒小毛刺 写入数据平均响应时间不超过1ms 写入数据最大响应时间不超过20ms(Java
    0 码力 | 35 页 | 993.29 KB | 1 年前
    3
  • pdf文档 万亿级数据洪峰下的消息引擎 Apache RocketMQ

    订阅消息峰值:数千万条/秒 堆积消息峰值:千亿条 消息中间件核心链路 1.4万亿 万亿洪峰下有哪些问题 机器假死 IO Util,Load飙高 磁盘响应慢 消息大量堆积 网卡故障,甚至流量跑满 磁盘损坏 零点之战:发布消息SLA要求100% 慢请求开始大量增加 分布式系统雪崩 容量不足,单机热点 问题的本质: 可用性无限接近100% 可靠性无限接近100% 可用性 > 可靠性 1 141 146 1. 每秒支撑千万级消息发布 2. 每条消息发布最大响应时间 不超过20ms 3. 每条消息发布平均响应时间 不超过3ms 1.4万亿 分布式慢请求带来的挑战 1.4万亿 消息中间件分布式慢请求解法 01 02 低延迟分布式存储系统 在线熔断机制,秒级隔离 03 容量保障,限流 1.4万亿 低延迟分布式存储系统 – RocketMQ存储 Java Heap PageCache的毛刺解决方案小结 1.4万亿 低延迟分布式存储系统 – PageCache的毛刺解决方案小结 操作系统Page Cache Radix Tree 自旋锁,产生几秒的大毛刺 如果遇到坏盘,可能Block若干分钟,对系统产生致命影响。 操作系统Page Cache Radix Tree 每个Page的阻塞锁,产生几百毫秒小毛刺 写入数据平均响应时间不超过1ms 写入数据最大响应时间不超过20ms(Java
    0 码力 | 35 页 | 5.82 MB | 1 年前
    3
  • pdf文档 Apache RocketMQ 从入门到实战

    商业行为。 7 > 开篇:我的另一种参与 RocketMQ 开源社区的方式  RocketMQ 为什么性能高效,到底运用了什么“厉害”的技术?  RocketMQ 如何实现刷盘(可以类比一下数据库方面的刷盘、redo、undo 日志)?  RocketMQ 文件存储设计理念、基于文件的 Hash 索引是怎么实现的?  定时消息、消息过滤等实现原理。  如何进行网络编程(Netty 通过追踪源码来寻求答案,如果大家想急于答案,可以跳过问题分析,直接查看本文末尾的 问题解答部分。 通过本文的阅读,您将获得如下信息: 1. RocketMQ 消费 TPS 的收集与计算逻辑。 2. RocketMQ 监控指标的设计思路。 3. RocketMQ 主从同步,消费者从主服务器拉取还是从从服务器拉取的判断逻辑。 本文来自『中间件兴趣圈』公众号,仅作技术交流,未授权任何商业行为。 51 > 1.5 踩坑记:rocketmq-console 消费 TPS 统计实现原理 消费 TPS 计算逻辑 首先我们还是从 tpsGroupGetNums 方法入手,探究一下 tps 的获取逻辑,然后再 探究数据的采集原理(这也是 rocketmq 监控相关)。 BrokerStatsManager#tpsGroupGetNums public double tpsGroupGetNums(final String group, final String
    0 码力 | 165 页 | 12.53 MB | 1 年前
    3
  • pdf文档 rocketmq 服务部署

    Broker的角色,AYNSC_MASTER=异步复制master,SYNC_MASTER=同步双写master,SLAVE= lave节点 brokerRole=ASYNC_MASTER # 刷盘方式,ASYNC_FLUSH=异步刷盘,SYNC_FLUSH=同步刷盘 flushDiskType=ASYNC_FLUSH # broker对外服务的监听端口 listenPort=10911 # nameServer地址,如果name Broker的角色,AYNSC_MASTER=异步复制master,SYNC_MASTER=同步双写master,SLAVE= lave节点 brokerRole=SLAVE # 刷盘方式,ASYNC_FLUSH=异步刷盘,SYNC_FLUSH=同步刷盘 flushDiskType=ASYNC_FLUSH # broker对外服务的监听端口 listenPort=11011 # nameServer地址,如果name Broker的角色,AYNSC_MASTER=异步复制master,SYNC_MASTER=同步双写master,SLAVE= lave节点 brokerRole=ASYNC_MASTER # 刷盘方式,ASYNC_FLUSH=异步刷盘,SYNC_FLUSH=同步刷盘 flushDiskType=ASYNC_FLUSH # broker对外服务的监听端口 listenPort=10911 # nameServer地址,如果name
    0 码力 | 11 页 | 284.35 KB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    .......................................................................................... 40 五:刷盘策略 ................................................................................................. 件还是有点耗时的, getMinOffset 获取队列消息最少偏移量,即第一个文件的文件起始偏移量 getMaxOffset 获取队列目前写到位置偏移量 getCommitWhere 刷盘刷到哪里了 5) DefaultMessageStore 消息存储层实现 (1) putMessage 添加消息委托给 commitLog.putMessage(msg),主要流程: <2>向 mapedFile 中添加一条消息记录 <3> 构建 DispatchRequest 对象,添加到分发索引服务 DispatchMessageService 线程 中去 <4>唤醒异步刷盘线程 <5> 向发送方返回结果 (2)DispatchMessageService <1>分发消息位置到 ConsumeQueue <2>分发到 IndexService
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
  • pdf文档 基于Apache APISIX 与RocketMQ 构建云原生一体化架构

    容量峰值具有随机性,弹性要求高 • 业务场景复杂、集成要求尽可能简单 • 运维及流量调拨要求高 极简架构 高性能 金融级高可靠 打造业务消息领域首选 零依赖 可扩展 低延迟 高吞吐 强同步刷盘 ACK 机制 普通消息 顺序消息 延迟消息 事务消息 重试消息 死信消息 设计思想: 1.消息不丢、高可靠是架构的基础 2.时延优先,兼顾吞吐 3.收敛业务共性问题,提供丰富的业务消息类型 loud Hosting C loud Native 公有云 专有云 混合云 EC S 容器 K8S 物理机 经典网络/VPC 网络 Overlay/Underlay NVMe 普通云盘 ESSD 云盘 SA TA 独占/混部/独立交付…… • 集群节点异常成为常态 • 依赖服务随时可能在进行迁移或重启 • 对弹性的要求开始从物理资源变为逻辑资源 • IaaS 的多样性对应用交付部署提出了更高要求
    0 码力 | 22 页 | 2.26 MB | 1 年前
    3
  • pdf文档 Apache RocketMQ 介绍

    延时,支持快速失败。 Consumer也由用户部署,支持PUSH和PULL两种消费模式,支持集群消费和广播消息,提供实时的 息订阅机制,满足大多数消费场景。 特点 ● RocketMQ支持异步实时刷盘,同步刷盘,同步复制,异步复制。具有高可靠性。不会因为操作系 的崩溃而导致数据丢失。 ● RocketMQ经过一系列的实践和优化,处理速度从最初的10,000TPS到目前已经超过50,000TPS。 纯
    0 码力 | 5 页 | 375.48 KB | 1 年前
    3
  • pdf文档 Apache RocketMQ on Amazon Web Services

    Broker 节点的 EC2 Instance 的类 型 12 FlushDiskType FlushDiskType ASYNC_FLUSH Apache RocketMQ 的刷盘方式, 支持 ASYNC_FLUSH 和 SYNC_FLUSH 13 Iops Iops 100 如果您选择的是 io1 卷 类型,此 设置为 EBS 卷的 IOPS,否则此选 项将被忽略。
    0 码力 | 18 页 | 1.55 MB | 1 年前
    3
  • pdf文档 快速部署高可用的Apache RocketMQ 集群 - Amazon S3

    节点的 EC2 Instance 的 类型 12 FlushDiskTyp e FlushDiskType ASYNC_FLUS H Apache RocketMQ 的刷盘方 式,支持 ASYNC_FLUSH 和 SYNC_FLUSH 13 Iops Iops 100 如果您选择的是 io1 卷 类型, 此设置为 EBS 卷的 IOPS,否则 此选 项将被忽略。
    0 码力 | 21 页 | 2.57 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
RocketMQ开发指南万亿级数洪峰消息引擎Apache数据入门实战rocketmq服务部署中间中间件消息中间件原理解析基于APISIX构建原生一体一体化架构介绍onAmazonWebServices快速可用集群S3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩