這些年,我們一起追的HadoopHortonworks Hadoop 簡史 5 / 74 The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task 有這麼 多? 11 / 74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing Iterative Modeling 人心不足蛇吞象 Hadoop 的體質 (Batch Processing) 問題: Batch 應用變成 Data Operating System: 透過 MapReduce 進行 Batch Processing 透過 Hive 與 Tez 進行 Interactive SQL Query ... 15 / 74 MapReduce 改造前 Hadoop 原來的架構,MapReduce 是一切應用的基礎 所有 Job 都得轉換成 MapReduce 16 / 74 MapReduce0 码力 | 74 页 | 45.76 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)ch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS)分别被纳入到 Hadoop 项目 中,Hadoop就此正式诞生,标志着大数据时代来临。 9)名字来源于Doug Cutting儿子的玩具大象 Hadoop的logo 加了Yarn。Yarn只负责 资 源 的 调 度 , MapReduce 只负 责 运算 。 Hadoop3.x在组成上没 有变化。 1.5.1 HDFS 架构概述 Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。 HDFS架构概述 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、 YARN资源管理 MapReduce离线计算 Spark Core内存计算 Hive 数据查询 Spark Mlib 数据挖掘 Spark Streaming 实时计算 Spark Sql 数据查询 Oozie任务调度 Azkaban任务调度 业务模型、数据可视化、业务应用 Z o o k e e p e r 数 据 平 台 配 置 和 调 度 数据来源层 数据传输层 数据存储层0 码力 | 35 页 | 1.70 MB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS file containing two numbers CREATE OR REPLACE PACKAGE hdfs_reader IS -- Return type of pl/sql table function TYPE return_rows_t IS TABLE OF hadoop_row_obj; -- Checks if current invocation cluster import java.sql.*; //import oracle.jdbc.*; //import oracle.sql.*; import oracle.jdbc.pool.*; //import java.util.Arrays; //import oracle.sql.ARRAY; //import oracle.sql.ArrayDescriptor;0 码力 | 21 页 | 1.03 MB | 1 年前3
Hadoop 概述。 还有其他一些系统能与 Hadoop 进行集成并从其基础架构中受 益。虽然 Hadoop 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介绍这些组件中的一部分,并且展示它们如何与 Hadoop 进行交互。 1.1 商业分析与大数据 1.1.2 Hadoop 分布式文件系统(HDFS) 在 Hadoop Common 安装完成后,是时候该研究 Hadoop Stack 的其余组件了。HDFS(Hadoop Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 统的数据库或数据结构进行对比。它也不能取代现有的 RDBMS 环 Hadoop 大数据解决方案 8 境。Hive 提供了一种为数据赋予结构的渠道,并且通过一种名为 HiveQL 的类 SQL 语言进行数据查询。 Hive Thrift 服务器 驱动程序 解析器 执行 Hive Web 接口 计划器 优化器 MS 客户端 元存储 图 1-3 10 码力 | 17 页 | 583.90 KB | 1 年前3
大数据集成与Hadoop - IBM收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在 贵。您应该能够构建一次作业,然后即可在三个环境中的任意 一个环境内运行它。 最适合Hadoop的流程 Hadoop 平台由以下两个主要组件构成:分布式容错文件系统 (称为Hadoop Distributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 ETL工作负载会导致查询SLA降级,最终需要您额外投 资购买昂贵的EDW容量。 • 数据被转储到EDW之前未清理数据,一旦进入EDW环 境将永远无法进行清理工作,继而导致数据质量较差。 • 企业持续严重依赖手动编码SQL脚本来执行数据转换。 • 添加新数据源或修改现有ETL脚本较为昂贵并且需要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 的逻辑推送到RDBMS。0 码力 | 16 页 | 1.23 MB | 1 年前3
大数据时代的Intel之Hadoop• 2X的随机访问性能 • 1.3X的Scan性能 • 接近直接写入HDFS性能 Interactive Hive over HBase 可通过Hive来访问HBase,迚行SQL查询 • 使用MapReduce来实现 • 比Hive访问HDFS慢3~5倍 IDH引入了Interactive Hive over HBase • 完全的Hive支持:常用功能(select Indexing – Page Rank Machine Learning – Bayesian Classification – K-Means Clustering Analytical Query HiBench 1.0 paper (“The HiBench Suite: Characterization of the MapReduce-Based Data Analysis”) published0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案................................ 42 Alibaba Cloud MaxCompute 解决方案 4 6.5.1 Hive SQL -> MaxCompute SQL 自动转换 ..................................................................... 42 6.5.2 UDF、MR 的输出,调整 hive 与 odps 的映射 ................................................... 46 7.1.5 生成 ODPS DDL、Hive SQL 以及兼容性报告 ................................................................. 48 7.1.6 查看兼容性报告,调整直到兼容性报告符合预期 odps 表和分区 .............................................................. 50 7.1.8 运行 hive_udtf_sql_runner.py,将 hive 的数据同步到 odps ........................................ 51 7.2 进阶功能..............0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 3.0以及未来Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK 8+ 升级 Classpath隔离 Shell脚本的重构 Journal Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN YARN Timeline Service v.2 YARN Federation0 码力 | 33 页 | 841.56 KB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
MATLAB的大数据处理 ▪ 编程 ▪ Streaming ▪ Block Processing ▪ Parallel-for loops ▪ GPU Arrays ▪ SPMD and Distributed Arrays ▪ MapReduce ▪ MapReduce (MDCS/PCT) ▪ MATLAB API for Spark API ▪ Tall Arrays ▪ 计算 Process 8 ▪ MATLAB本地多核并行计算计 (PCT, Parallel Computing Toolbox) ▪ MATLAB集群之上的分布式计算 (MDCS, MATLAB Distributed Computing Server) 9 MATLAB与Spark/Hadoop集成 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型0 码力 | 17 页 | 1.64 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统0 码力 | 8 页 | 313.35 KB | 1 年前3
共 11 条
- 1
- 2













