 尚硅谷大数据技术之Hadoop(入门)Hadoop 在兼容性,安 全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。 (4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一 个 Hadoop 集群,并对集群的节点及服务进行实时监控。 3)Hortonworks Hadoop 官网地址:https://hortonworks.com/products/data-center/hdp/ Hadoop 优势(4 高) Hadoop优势(4高) 1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元 素或存储出现故障,也不会导致数据的丢失。 2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop102 Hadoop103 Hadoop104 计算子任务 计算子任务 计算任务汇总 计算子任务0 码力 | 35 页 | 1.70 MB | 1 年前3 尚硅谷大数据技术之Hadoop(入门)Hadoop 在兼容性,安 全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。 (4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一 个 Hadoop 集群,并对集群的节点及服务进行实时监控。 3)Hortonworks Hadoop 官网地址:https://hortonworks.com/products/data-center/hdp/ Hadoop 优势(4 高) Hadoop优势(4高) 1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元 素或存储出现故障,也不会导致数据的丢失。 2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop102 Hadoop103 Hadoop104 计算子任务 计算子任务 计算任务汇总 计算子任务0 码力 | 35 页 | 1.70 MB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册...................................................................................... 7 3 格式化并启动集群 ................................................................................................ 7 2.7.7 1.3 Hadoop 软件简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服0 码力 | 8 页 | 313.35 KB | 1 年前3 银河麒麟服务器操作系统V4 Hadoop 软件适配手册...................................................................................... 7 3 格式化并启动集群 ................................................................................................ 7 2.7.7 1.3 Hadoop 软件简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服0 码力 | 8 页 | 313.35 KB | 1 年前3
 Hadoop 迁移到阿里云MaxCompute 技术方案...................................................................................... 22 6.3.2 资源评估 ................................................................................................ 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来越多的企业客户选择数据上云,在云上构建数据仓库。以云数 仓、云计算为核心的企业服务架构成为新一代大数据建站的主流趋势。MaxCompute 作为云数 仓、云计算的核心引擎,承载了越来越多企业客户的数据业务和数据资产,免运维、低成本、高 度安全和稳定性,让客户的资源更加聚焦在业务开发上,加速业务发展。 2.2.1 MaxComptue 的逻辑架构 2.2.2 MaxCompute 产品特性 MaxCompute 提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建 好了 MaxCompute 计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产 品开箱即用。 功能 MaxCompute 产品组件 特性介绍 数据存储0 码力 | 59 页 | 4.33 MB | 1 年前3 Hadoop 迁移到阿里云MaxCompute 技术方案...................................................................................... 22 6.3.2 资源评估 ................................................................................................ 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来越多的企业客户选择数据上云,在云上构建数据仓库。以云数 仓、云计算为核心的企业服务架构成为新一代大数据建站的主流趋势。MaxCompute 作为云数 仓、云计算的核心引擎,承载了越来越多企业客户的数据业务和数据资产,免运维、低成本、高 度安全和稳定性,让客户的资源更加聚焦在业务开发上,加速业务发展。 2.2.1 MaxComptue 的逻辑架构 2.2.2 MaxCompute 产品特性 MaxCompute 提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建 好了 MaxCompute 计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产 品开箱即用。 功能 MaxCompute 产品组件 特性介绍 数据存储0 码力 | 59 页 | 4.33 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。 尚硅谷大数据技术之Hadoop(生产调优手册)的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。- dfs.namenode.handler.count - 21 - fs.trash.interval - 1 0 码力 | 41 页 | 2.32 MB | 1 年前3
 Hadoop 3.0以及未来Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation  劢态资源配置  容器资源的劢态调整  资源隔离  调度的增强  YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 读写分离 HBase存储 YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 • 网络IO的隔离- YARN-21400 码力 | 33 页 | 841.56 KB | 1 年前3 Hadoop 3.0以及未来Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation  劢态资源配置  容器资源的劢态调整  资源隔离  调度的增强  YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 读写分离 HBase存储 YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 • 网络IO的隔离- YARN-21400 码力 | 33 页 | 841.56 KB | 1 年前3
 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ MATLAB集群之上的分布式计算 (MDCS, MATLAB Distributed Computing Server) 9 MATLAB与Spark/Hadoop集成 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Core (Batch Processing) 12 MATLAB与Hadoop datastore0 码力 | 17 页 | 1.64 MB | 1 年前3 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ MATLAB集群之上的分布式计算 (MDCS, MATLAB Distributed Computing Server) 9 MATLAB与Spark/Hadoop集成 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Core (Batch Processing) 12 MATLAB与Hadoop datastore0 码力 | 17 页 | 1.64 MB | 1 年前3
 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost: 注解: hadoop-为hadoop具体对应的版本,可查看master的 root@master_ip:/home/hadoop/spark /root/ #pig scp -r root@master_ip:/home/hadoop/pig /root/ 修改配置 增加hosts映射,从集群master1节点上拷⻉⽂件夹到UHost: scp root@master_ip:/etc/hosts /tmp/hosts cat /tmp/hosts | grep uhadoop >> /etc/hosts0 码力 | 12 页 | 135.94 KB | 1 年前3 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost: 注解: hadoop-为hadoop具体对应的版本,可查看master的 root@master_ip:/home/hadoop/spark /root/ #pig scp -r root@master_ip:/home/hadoop/pig /root/ 修改配置 增加hosts映射,从集群master1节点上拷⻉⽂件夹到UHost: scp root@master_ip:/etc/hosts /tmp/hosts cat /tmp/hosts | grep uhadoop >> /etc/hosts0 码力 | 12 页 | 135.94 KB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 作业,该作业接着在 Hadoop 集群上运行同步 bash 脚本。这个 bash 脚本就是图 3 中的启动程 序 (launcher),它在 Hadoop 集群上启动 mapper 进程(第 3 步)。 5 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到0 码力 | 21 页 | 1.03 MB | 1 年前3 通过Oracle 并行处理集成 Hadoop 数据管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 作业,该作业接着在 Hadoop 集群上运行同步 bash 脚本。这个 bash 脚本就是图 3 中的启动程 序 (launcher),它在 Hadoop 集群上启动 mapper 进程(第 3 步)。 5 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到0 码力 | 21 页 | 1.03 MB | 1 年前3
 大数据时代的Intel之Hadoop安装、配置、管理、监控、告警 英特尔Hadoop性能优化 测试配置  性能数据在8台英特尔至强服务器组成的小规模集群上测试得到  服务器配置:6核Intel E5 CPU, 48GB内存,8块 7200rpm SATA硬盘, 千兆以太网 测试用例和性能  向HBase集群插入1KB大小的记录  每台服务器平均每秒插入1万条记录,峰值在2万条记录  每台服务器,从磁盘扫描数据,每秒完成400个扫描。 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更均衡,系统安装程序计算得出的优化参数配置,适合大多数 应用情冴,不硬件技术相结合,提高平台性能 提供企业必须的管理和监控功能 •提供独有的基亍浏览器的集群安装和管理界面,解决开源版本管理困难的问题,提供网页、邮件方式的系统异常报警 性能评测工具:Intel HiBench HiBench Micro Benchmarks Web0 码力 | 36 页 | 2.50 MB | 1 年前3 大数据时代的Intel之Hadoop安装、配置、管理、监控、告警 英特尔Hadoop性能优化 测试配置  性能数据在8台英特尔至强服务器组成的小规模集群上测试得到  服务器配置:6核Intel E5 CPU, 48GB内存,8块 7200rpm SATA硬盘, 千兆以太网 测试用例和性能  向HBase集群插入1KB大小的记录  每台服务器平均每秒插入1万条记录,峰值在2万条记录  每台服务器,从磁盘扫描数据,每秒完成400个扫描。 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更均衡,系统安装程序计算得出的优化参数配置,适合大多数 应用情冴,不硬件技术相结合,提高平台性能 提供企业必须的管理和监控功能 •提供独有的基亍浏览器的集群安装和管理界面,解决开源版本管理困难的问题,提供网页、邮件方式的系统异常报警 性能评测工具:Intel HiBench HiBench Micro Benchmarks Web0 码力 | 36 页 | 2.50 MB | 1 年前3
 Hadoop 概述HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 分布式数据处理 从属 NAMENODE 活动 NAMENODE 备用 NAMENODE 调度器 共享编辑日志 或者 JOURNAL NODE 从节点 容器 容器 容器 资源管理器 数据节点 数据节点 数据节点 节点管理器 节点管理器 节点管理器 图 1-1 MapReduce 的功能使得它成为最常用的批处理工具之一。该处 理器的灵活性使其能利用自身的影响力来挑战现有系统。通过将数 生态系统。 1.1.4 YARN 是什么 YARN 基础设施(另一个资源协调器)是一项用于提供执行应用 程序所需的计算资源(内存、CPU 等)的框架。 YARN 有什么诱人的特点或是性质?其中两个重要的部分是资 源管理器和节点管理器。让我们来勾勒 YARN 的框架。首先考虑一 个两层的群集,其中资源管理器在顶层(每个群集中只有一个)。资 Hadoop 大数据解决方案 60 码力 | 17 页 | 583.90 KB | 1 年前3 Hadoop 概述HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 分布式数据处理 从属 NAMENODE 活动 NAMENODE 备用 NAMENODE 调度器 共享编辑日志 或者 JOURNAL NODE 从节点 容器 容器 容器 资源管理器 数据节点 数据节点 数据节点 节点管理器 节点管理器 节点管理器 图 1-1 MapReduce 的功能使得它成为最常用的批处理工具之一。该处 理器的灵活性使其能利用自身的影响力来挑战现有系统。通过将数 生态系统。 1.1.4 YARN 是什么 YARN 基础设施(另一个资源协调器)是一项用于提供执行应用 程序所需的计算资源(内存、CPU 等)的框架。 YARN 有什么诱人的特点或是性质?其中两个重要的部分是资 源管理器和节点管理器。让我们来勾勒 YARN 的框架。首先考虑一 个两层的群集,其中资源管理器在顶层(每个群集中只有一个)。资 Hadoop 大数据解决方案 60 码力 | 17 页 | 583.90 KB | 1 年前3
共 11 条
- 1
- 2













