尚硅谷大数据技术之Hadoop(生产调优手册)10:43:16,854 INFO fs.TestDFSIO: 注意:nrFiles n 为生成 mapTask 的数量,生产环境一般可通过 hadoop103:8088 查看 CPU 核数,设置为(CPU 核数 - 1) ➢ Number of files:生成 mapTask 数量,一般是集群中(CPU 核数-1),我们测试虚 拟机就按照实际的物理内存-1 分配即可 ➢ Total 处理的文件大小 ➢ Throughput mb/sec:单个 mapTak 的吞吐量 计算方式:处理的总文件大小/每一个 mapTask 写数据的时间累加 集群整体吞吐量:生成 mapTask 数量*单个 mapTak 的吞吐量 ➢ Average IO rate mb/sec::平均 mapTak 的吞吐量 计算方式:每个 mapTask 处理文件大小/每一个 mapTask 写数据的时间 ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 全部相加除以 task 数量 ➢ IO rate std deviation:方差、反映各个 mapTask 处理的差值,越小越均衡 2)注意:如果测试过程中,出现异常 (1)可以在 yarn-site.xml 中设置虚拟内存检测为0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop开发指南查看HDFS状态,节点信息 状态,节点信息 hdfs dfsadmin -report 2.5.3 修改 修改HDFS⽂件副本数量 ⽂件副本数量 hdfs dfs -setrep -R [replication-factor] [targetDir] ⽰例:修改HDFS 根⽬录下⽂件副本数量为2,hdfs dfs -setrep -R 2 / 2.5.4 查看 查看HDFS⽂件系统状态 ⽂件系统状态 Hadoop开发指南0 码力 | 12 页 | 135.94 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNodedfs.replication 1 副本个数,配置默认是 3,应小于 datanode 机器数量 2.2.5 配置 mapred-site.xml $ cp mapred-site.xml0 码力 | 8 页 | 313.35 KB | 1 年前3
Hadoop 概述的功能使得它成为最常用的批处理工具之一。该处 理器的灵活性使其能利用自身的影响力来挑战现有系统。通过将数 据处理的工作负载分为多个并行执行的任务,MapReduce 允许其用 户处理存储于 HDFS 上不限数量的任意类型的数据。因此,MapReduce 让 Hadoop 成为了一款强大工具。 在 Hadoop 最近的发展中,另有一款称为 YARN 的组件已经可 用于进一步管理 Hadoop 生态系统。 是用于决定如何分 配资源的资源调度器。节点管理器(每个群集中有多个)是此基础设 施的从节点。当开始运行时,它向资源管理器声明自己。此类节点 有能力向群集提供资源,它的资源容量即内存和其他资源的数量。 在运行时,资源调度器将决定如何使用该容量。Hadoop 2 中的 YARN 框架允许工作负载在各种处理框架之间动态共享群集资源,这些框 架包括 MapReduce、Impala 和 Spark。YARN0 码力 | 17 页 | 583.90 KB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案Airflow 等作业调度工具 Datawroks Studio 4.2 MMA 功能介绍 4.2.1 迁移评估分析 在迁移对 Hadoop 平台进行诊断分析,评估数据迁移规模、作业迁移改造的数量、预估迁 移后的成本,从而对迁移工作进行整体评估和决策。 4.2.2 数据迁移自动化 利用迁移工具,可以对 Hive Meta 及数据进行检测扫描,自动在 MaxCompute 创建对应 可以看到,数据已经成功上传,下面验证其中一个 partition: Alibaba Cloud MaxCompute 解决方案 52 可以看到,partition 中 record 的数量符合预期。 7.2 进阶功能 7.2.1 仅生成指定 database 或 table 的 metadata 在上面的例子中,我们抓去了 hive 中所有 database 和表的 metadata,但在很多环0 码力 | 59 页 | 4.33 MB | 1 年前3
大数据时代的Intel之HadoopHBase的性能优化 预分配region 启用压缩已减少HDFS数据量,可提高读性能 Region Server迚程配置大内存(>16G) 每个Region Server拥有的region数量<300 优化表结构设计,防止少数几个region成为瓶颈 • 一个简单的经验公式:每台region server纯写入时高负载应能 达到>1万条记录/秒(每记录200字节) 英特尔Hadoop功能增强0 码力 | 36 页 | 2.50 MB | 1 年前3
大数据集成与Hadoop - IBM工具搭配Hadoop后都会得到高性能、高度可扩展 的数据集成平台。 事实上,MapReduce的设计宗旨并非是对海量数据进行 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可0 码力 | 16 页 | 1.23 MB | 1 年前3
共 7 条
- 1













