积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Hadoop(12)

语言

全部中文(简体)(10)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 概述

    商业分析与大数据 商业分析通过统计和业务分析对数据进行研究。Hadoop 允许你 在其数据存储中进行业务分析。这些结果使得组织和公司能够做出 有利于自身的更好商业决策。 为加深理解,让我们勾勒一下大数据的概况。鉴于所涉及数据 的规模,它们会分布于大量存储和计算节点上,而这得益于使用 Hadoop。由于 Hadoop 是分布式的(而非集中式的),因而不具备关系 型数据库管理系统(RDBMS)的特点。这使得你能够使用 的组件可以帮助你处理这些大 型数据存储。 类似 Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 是一个适用于这 些商业模型的解决方案。 1.1.1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基 本进程,例如对 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 个或多个节点实施和执行 数据管道和数据分区的过 程,从而充分利用非共享 架构。软件数据流还可以 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 利用内存加快数据加载,在众多的其它的 In-Memory 类数据库或 Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的一个分区对应一个子 RDD 的多个分区。对与 Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage 方法对与输入节点完好, 而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为 无法重试,需要向上其祖先追溯看是否可以重试(这就是 lineage,血统的意思),Narrow Dependencies 对于数据的重算开销要远小于 Wide
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。  批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据进 行长 时间 处理 分析 ,并将 处理 后的 数据 写 入 新的 数据 对象 供后 续使 用。如 Hive、 MapReduce、Spark 等。 Alibaba 使用时,存储与计算解耦,不需要仅仅为了存储扩大不必 要的计算资源 SQL MaxCompute SQL TPC-DS 100% 支持,同时语法高度兼容 Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服 务等场景。 Alibaba Cloud MaxCompute 解决方案 14 Spark MaxCompute
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    通过外部表进行访问 在图 1 中,我们利用 Oracle Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 数据 图 2. 利用表函数进行并行处理 由于表函数可以并行运行,Hadoop 流作业也可以不同程度地并行运行,并且后者不受 Oracle 查询协调器的控制,这种情况下,队列能提供负载平衡。 4 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 利用表函数的示例 下面我们将以一个实际示例展示图 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列 中的数据,并将来自两个来源的数据整合为单一结果集提供给最终用户。 图 4. 监控进程 Hadoop的进程 (mapper) 启动之后,作业监控器进程将监视启动程序脚本。一旦mapper 完成 Hadoop 集群中数据的处理之后,bash
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 利⽤安装脚本部署 利⽤安装脚本部署 在任⼀master节点下的都有 /root/install\_uhadoop\_client.sh,⽤⼾可以利⽤此脚本进⾏客⼾端的安装部署 也可以通过外⽹下载最新版本安装脚本 Hadoop开发指南 Copyright © e节点 进⾏数据交互。 2.2.1 上传⽂件 上传⽂件 UHadoop集群默认配置2个Master节点,同⼀时刻只有⼀个节点Namenode处于Active状态,另⼀个处于Standby状态。下⾯以uhadoop-******-master1的Namenode为Active为例 数据准备 touch uhadoop.txt echo "uhadoop" > uhadoop.txt 创建⽂件请求 op=DELETE&user.name=root" 2.4 MapReduce Job 以terasort为例,说明如何提交⼀个MapReduce Job ⽣成官⽅terasort input数据集 hadoop jar /home/hadoop/hadoop-examples.jar teragen 100 /tmp/terasort_input 提交任务 hadoop jar /hom
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输入的键值对会被转换成零到多个键值对输出。其中输入和输出的键必须完全不 同,而输入和输出的值则可能完全不同。  reduce: 某个键的所有键值对都会被分发到同一个 reduce 操作中。确切的说,这个键
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    其子公司、分包商和分支机构,以及 相关的董事、管理人员和员工造成损害,无论英特尔及其分包商在英特尔产品戒其仸何部件的设计、制造戒警示环节是否出现疏忽大意的情冴。 英特尔可以随时在丌发布声明的情冴下修改规格和产品说明。设计者丌应信赖仸何英特产品所丌具有的特性,设计者亦丌应信赖仸何标有保留权利摂戒未定义摂说明戒特性描述。英特尔保 留今后对其定义的权利,对亍因今后对其迚行修改所产生的冲突戒丌兼容性概 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英 GB -> TB TB -> PB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 1)hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例) (1)使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情 况 [root@hadoop100 ~]# ping www.baidu.com PING www.baidu.com (14.215.177.39) 56(84) bytes of Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 3)在 Linux 系统下的 opt 目录中查看软件包是否导入成功 [atguigu@hadoop102 ~]$ ls /opt/software/ 看到如下结果: jdk-8u212-linux-x64.tar.gz
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    >>> import math >>> print int(20*math.log(3)) 21 >>> quit() 1.3 开启回收站配置 开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、 备份等作用。 1)回收站工作机制 尚硅谷大数据技术之 Hadoop(生产调优手册) ———————————————— HDFS—存储优化 注:演示纠删码和异构存储需要一共 5 台虚拟机。尽量拿另外一套集群。提前准备 5 台 服务器的集群。 5.1 纠删码 5.1.1 纠删码原理 HDFS 默认情况下,一个文件有 3 个副本,这样提高了数据的可靠性,但也带来了 2 倍 的冗余开销。Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约 50%左右的存储空间。 hadoop fs -put /opt/module/hadoop- 3.1.3/NOTICE.txt /hdfsdata 5.2.3 HOT 存储策略案例 (1)最开始我们未设置存储策略的情况下,我们获取该目录的存储策略 [atguigu@hadoop102 hadoop-3.1.3]$ hdfs storagepolicies -getStoragePolicy -path /hdfsdata
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
Hadoop概述大数集成IBMSpark简介以及对比迁移阿里MaxCompute技术方案通过Oracle并行处理并行处理数据开发指南银河麒麟服务务器服务器操作系统操作系统V4软件适配手册时代Intel硅谷入门生产调优
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩