大数据集成与Hadoop - IBM为彻底切断这种误导,并开发适合您的Hadoop大数据项目的 采用计划,必须遵循最佳实践方法,充分考虑各种新兴技术、可 扩展性需求以及当前的资源和技能水平。面临的挑战:创建最佳 的大数据集成方法和架构,同时避免各种实施缺陷。 海量数据可扩展性:总体要求 如果您的大数据集成解决方案无法支持海量数据可扩展性, 那么很可能无法达到预期的效果。为发挥大数据措施的整体 业务价值,对于大部分Hadoop项目的大数据集成而言,海 处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出 利用RDBMS服务器的多余容量 • 数据库可以较快地执行某些 流程 缺点 • 硬件和存储费用昂贵 • 查询SLA出现降级 • 并非所有ETL逻辑均可推送到 RDBMS(使用ETL工具或手 动编码) • 无法利用商业硬件 • 通常需要手动编码 • 复杂转换方面的限制 • 数据清理限制 • 数据库在执行某些流程时速 度较慢 优点 • 利用MapReduce MPP引擎 • 利用商业硬件和存储 • 释放数据库服务器上的容量0 码力 | 16 页 | 1.23 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)numDataUnits=2, numParityUnits=1]], CellSize=1048576, Id=4], State=DISABLED 3)纠删码策略解释: RS-3-2-1024k:使用 RS 编码,每 3 个数据单元,生成 2 个校验单元,共 5 个单元,也 就是说:这 5 个单元中,只要有任意的 3 个单元存在(不管是数据单元还是校验单元,只要 尚硅谷大数据技术之 RS-10-4-1024k:使用 RS 编码,每 10 个数据单元(cell),生成 4 个校验单元,共 14 个单元,也就是说:这 14 个单元中,只要有任意的 10 个单元存在(不管是数据单元还是校 验单元,只要总数=10),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。 RS-6-3-1024k:使用 RS 编码,每 6 个数据单元,生成 3 个校验单元,共 1024k=1024*1024=1048576。 RS-LEGACY-6-3-1024k:策略和上面的 RS-6-3-1024k 一样,只是编码的算法用的是 rs- legacy。 XOR-2-1-1024k:使用 XOR 编码(速度比 RS 编码快),每 2 个数据单元,生成 1 个校 验单元,共 3 个单元,也就是说:这 3 个单元中,只要有任意的 2 个单元存在(不管是数据 单元还是校验单元,只要总数=0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 3.0以及未来• MapReduce HDFS纠错码(Erasure Coding) • 一个简单的例子 1备份: 1,0 需要额外的2位 XOR编码: 1,0 需要额外的1位 HDFS纠错码(Erasure Coding) • Reed-Solomon (RS) 编码 数据可靠性和存储效率 • 数据可靠性:可以最多几个节点故障 • 存储效率:k/(k+m) 可靠性 存储效率 单副本 0 100%0 码力 | 33 页 | 841.56 KB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案1 的第 3、4 步。 4. 根据模板生成 DataWorks 项目描述文档,打包为:dataworks_project.tgz 上传到 Dataworks。【注意】:一期仅支持:1)打包文件手动上传;2)支持 OOIZE 调度引擎的配 置模板和 Dataworks 工作流配置模板。 5. 上传完成后,Dataworks 服务会根据 ODPS DDL 批量生成 MaxCompute 的 Dataworks 项目描述文档,参见 6.4.2。 2. Dataworks 会自动批量将 Hive SQL 转换成 ODPS SQL,对于不能转换的 SQL,系统会给 出错误提示,需要客户手动修改。 6.5.2 UDF、MR 迁移 支持相同逻辑的 UDF、MR 输入、输出参数的映射转换,但 UDF 和 MR 内部逻辑需要客户自己 维护。【注意】:不支持在 UDF、MR 中直接访问文件系统、网络访问、外部数据源连接。0 码力 | 59 页 | 4.33 MB | 1 年前3
大数据时代的Intel之HadoopBalancing 25000 82000 查询数/秒 揑入记录数/秒 HBase写入性能讨论 写入时的性能瓶颈: • 客户端 • 使用Write buffer减少RPC • 避免频繁创建HTable对象 • 如果可以,关闭WAL • Region负载丌均衡:要让写均匀分布到所有的region server上 • 如果写入的row key是基本单调的(例如时序数据 key是基本单调的(例如时序数据),那么基本上会都落在同一个region上,所以只有一个region server活跃,总体性能会很差 • “加盐” • 过多的compaction和compaction丌及时 • 尽量避免:比方说增加compaction thread数,防止阻塞写入 • 过多的split • 预分配region 大对象的高效存储(IDH2.3) 在交通、金融等领域,要求存储大量的图片 分中心 A 分中心 B 分中心 C 特点与优势 全局虚拟大表,访问方便 大表数据分区存放在物理分中心 接入仸何分中心可访问全局数据 高可用性 适合本地高速写入 分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版 •全面测试的企业级发行版,保证长期稳定运行,集成最新开源的和自行开发的补丁,用户可以及时修正0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 概述可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 的连接器将有可能适用于环境中系统的最新版本。 如果想与 Hadoop 一起使用的系统不是应用程序或数据库引擎的最 新版本,那么你需要将升级的因素考虑在内,以便使用增强版完整 功能。我们建议全面检查你的系统需求,以避免沮丧和失望。Hadoop 生态系统会将所有新技术带入到你的系统中。 1.4.1 Hadoop 生态系统 Apache 将他们的集成称作生态系统。字典中将生态系统定义 为:生物与它们所0 码力 | 17 页 | 583.90 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据本文中的示例表明,将 Hadoop 系统与 Oracle Database 11g 集成是非常容易的。 本文中讨论的方法允许客户将 Hadoop 中的数据直接传递到 Oracle 查询中。这避免了将数据 获取到本地文件系统并物化到 Oracle 表中,之后才能在 SQL 查询中访问这些数据的过程。 甲骨文(中国)软件系统有限公司 北京远洋光华中心办公室 地址:北京0 码力 | 21 页 | 1.03 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)atguigu@hadoop102:/opt/module/* atguigu@hadoop104:/opt/module 2)rsync 远程同步工具 rsync 主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。 rsync 和 scp 区别:用 rsync 做文件的复制要比 scp 的速度快,rsync 只对差异文件做更 新。scp 是把所有文件都复制过去。0 码力 | 35 页 | 1.70 MB | 1 年前3
共 8 条
- 1













