大数据集成与Hadoop - IBM共享内存 磁盘 磁盘 关键成功因素:大数据集成平台必须支持全部三个维度的可 扩展性 • 线性数据可扩展性:硬件和软件系统通过线性增加硬件 资源来线性提高处理吞吐量。例如,如果在50个处理器 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可以处理400GB数据,以此类推,则说明应用 程序可以实现线性数据可扩展性。 • 应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 数 据可扩展性,这意味着在设计之初,并未考虑利用非共享大规模 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 有它们,该平台将无法处理大量的大数据。 InfoSphere0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案的数据湖/数据仓库业务负载 ......................................................................... 15 3.2 不同的网络环境及部署形态迁移 ........................................................................................... ...................................................................................... 30 6.4.1 环境准备 ................................................................................................ ................................................................................. 44 7.1.1 准备工具和环境 ..................................................................................................0 码力 | 59 页 | 4.33 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大 3)ApplicationMaster(AM):单个任务运行的老大 2)NodeManager(NM):单个节点服务器资源老大 4)Container:容器,相当一台独立的服务器,里面封装了 任务运行所需要的资源,如内存、CPU、磁盘、网络等。 NodeManager Container NodeManager Container Container Container Container MapTask ReduceTask Container ReduceTask MapTask 说明1:客户端可以有多个 说明2:集群上可以运行多个ApplicationMaster 说明3:每个NodeManager上可以有多个Container 4G内存 2CPU 4G内存 2CPU 4G内存 2CPU 12G内存 6CPU Nginx Tomcat 收集访 问日志 Tomcat 收集访 问日志 Tomcat 推荐业务 分析结果数据库 分析结果文件 Flink 第 2 章 Hadoop 运行环境搭建(开发重点) 2.1 模板虚拟机环境准备 0)安装模板虚拟机,IP 地址 192.168.10.100、主机名称 hadoop100、内存 4G、硬盘 50G0 码力 | 35 页 | 1.70 MB | 1 年前3
Hadoop 概述归档(Java Archive,JAR)文件和用于启 动 Hadoop 的脚本。Hadoop Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 在其网站上明确 指出,如果你还在努力学习如何管理 Linux 环境的话,那么 Hadoop 并不是你能够应付的任务。建议在尝试安装 Hadoop 之前,你需要 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 在 Hadoop Common 安装完成后,是时候该研究 Hadoop Stack 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)章 HDFS—集群压测 在企业中非常关心每天从 Java 后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 exec time sec: 133.05 2021-02-09 10:43:16,854 INFO fs.TestDFSIO: 注意:nrFiles n 为生成 mapTask 的数量,生产环境一般可通过 hadoop103:8088 查看 CPU 核数,设置为(CPU 核数 - 1) ➢ Number of files:生成 mapTask 数量,一般是集群中(CPU 核数-1),我们测试虚 ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 3.3 集群数据均衡之磁盘间数据均衡 生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可 以执行磁盘数据均衡命令。(Hadoop3.x 新特性) (1)生成均衡计划(我们只有一块磁盘,不会生成计划) hdfs0 码力 | 41 页 | 2.32 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册.......................................................................................... 2 1.2 环境概述 ................................................................................................ 等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 Kylin-4.0.2-server-sp2-2000-19050910.Z1 Container 等几个组件构成。 ResourceManager 是 Master 上一个独立运行的进程,负责集群统一的资源管 理、调度、分配等等;NodeManager 是 Slave 上一个独立运行的进程,负责上报 节点的状态;App Master 和 Container 是运行在 Slave 上的组件,Container 是 yarn 中分配资源的一个单位,包涵内存、CPU 等等资源,yarn0 码力 | 8 页 | 313.35 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据将数据排入一个公共队列,而表函数则 从该队列中取出数据。由于该表函数能够并行运行,因此使用额外的逻辑来确保仅有一个服 务进程提交外部作业。 3 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 图 2. 利用表函数进行并行处理 由于表函数可以并行运行,Hadoop 流作业也可以不同程度地并行运行,并且后者不受 Oracle 查询协调器的控制,这种情况下,队列能提供负载平衡。 表函数调用同时也承担 着处理角色。 在第 2 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 作业,该作业接着在 Hadoop 集群上运行同步 bash 脚本。这个 bash 脚本就是图 3 中的启动程 序 (launcher),它在 Hadoop 集群上启动 mapper 进程(第 3 步)。 5 Oracle 白皮书 — END; END; / Bash 脚本 下面这个简短的脚本是图 3 的第 3 步和第 4 步所示的数据库外控制器。只要 Hadoop mapper 保持运行,系统就会持续执行这个同步步骤。 #!/bin/bash cd –HADOOP_HOME- A="/net/scratch/java/jdk1.6.0_16/bin/java -classpath0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据时代的Intel之Hadoop分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版 •全面测试的企业级发行版,保证长期稳定运行,集成最新开源的和自行开发的补丁,用户可以及时修正漏洞保证各个部件乊间的一致性,使应用顺滑运行 实时数据处理的分布式大数据应用平台 •通过对 HBase 迚行改迚和创新,英特尔 Hadoop 发行版提供实时数据处理功能。为企业对数据的实时监控和即时处理提供有效保障 Intel® SSD 910系列 降低延迟,大幅提升IOPS 新的存储架构— NVM 软件存储加速:Intel® CAS • Microsoft Windows平台 以服务方式运行;Linux上 是kernel module • Multi-Level Cache; 不系 统内存整合一起提高性能 • 对应用透明 • 被缓存设备,可以挂载成 普通文件系统0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop开发指南cat /tmp/hosts | grep uhadoop >> /etc/hosts Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 3/12 修改环境变量 修改/etc/profile或~/.bashrc,增加以下内容 # Environment variables required by hadoop export JAVA_HOME=/usr/java/latest LD_LIBRARY_PATH=$HADOOP_HOME/lib/native:/usr/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib:$LD_LIBRARY_PATH 让环境⽣效 source /etc/profile或者 source ~/.bashrc 2. HDFS HDFS是⼀个⾼度容错性和⾼吞吐量的分布式⽂件系统。它被设计的易于扩展也易于使⽤,适合海量⽂件的存储。0 码力 | 12 页 | 135.94 KB | 1 年前3
Hadoop 3.0以及未来允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 • 网络IO的隔离- YARN-2140 • Docker Container- YARN-3611 调度的增强0 码力 | 33 页 | 841.56 KB | 1 年前3
共 12 条
- 1
- 2













