Hadoop 迁移到阿里云MaxCompute 技术方案.................................................................... 17 4 Hadoop 到 MaxCompute 迁移工具介绍 ............................................................................................ 17 Assist) ................................................................................ 17 4.1.1 工具覆盖的场景: ............................................................................................ ................ 44 7.1.1 准备工具和环境 ................................................................................................................... 44 7.1.2 解压工具包,并配置 MaxCompute 连接信息 .........0 码力 | 59 页 | 4.33 MB | 1 年前3
大数据集成与Hadoop - IBM的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出。很多业界传言称,任何不可扩展的抽取、转换和加载 (ETL) 工具搭配Hadoop后都会得到高性能、高度可扩展 的数据集成平台。 事实上,MapReduce的设计宗旨并非是对海量数据进行 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 关键成功因素:大数据集成平台必须支持全部三个维度的可 扩展性 • 线性数据可扩展性:硬件和软件系统通过线性增加硬件 资源来线性提高处理吞吐量。例如,如果在50个处理器 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可以处理400GB数据,以此类推,则说明应用 程序可以实现线性数据可扩展性。 • 应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 系统中的多个处理器间实现线性数据可扩展性的 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 项目 软件数据流通过简化在一 个或多个节点实施和执行 数据管道和数据分区的过 程,从而充分利用非共享 架构。软件数据流还可以 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业,0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop开发指南/tmp/terasort_input /tmp/terasort_output Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 10/12 2.5 HDFS⽇常运维 ⽇常运维 2.5.1 重启服务 重启服务 重启Namenode:service hadoop-hdfs-namenode restart 重启Datanode:service hadoop-hdfs-datanode0 码力 | 12 页 | 135.94 KB | 1 年前3
大数据时代的Intel之HadoopPB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global 4.1 关系数据ETL工具 Flume 1.1.0 日志收集工具 Intel Hadoop Manager 2.2 安装、部署、配置、监控、告警和访问控制 Zookeeper 3.4.4 分布式协作服务 Pig 0.9.2 数据流处理语言 Mahout 0.6 数据挖掘 HBase 0.94.1 实时、分布式、高维数据库 Map/Reduce 应用情冴,不硬件技术相结合,提高平台性能 提供企业必须的管理和监控功能 •提供独有的基亍浏览器的集群安装和管理界面,解决开源版本管理困难的问题,提供网页、邮件方式的系统异常报警 性能评测工具:Intel HiBench HiBench Micro Benchmarks Web Search – Sort – WordCount – TeraSort –0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 概述HDFS、MapReduce、YARN、ZooKeeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 的过程中,每个组件都在平台中扮演着重 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 活动事件而呈现出指数增长。Hadoop 的组件可以帮助你处理这些大 型数据存储。 类似 Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 是一个适用于这 些商业模型的解决方案。 1.1.1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)组成(面试重点) Hadoop1.x、2.x、3.x区别 MapReduce(计算) HDFS(数据存储) Yarn(资源调度) Common(辅助工具) MapReduce (计算+资源调度) HDFS(数据存储) Common(辅助工具) Hadoop1.x组成 Hadoop2.x组成 在 Hadoop1.x 时 代 , Hadoop中的MapReduce同 时处理业务逻辑运算和资 数据传输层 数据存储层 资源管理层 数据计算层 任务调度层 业务模型层 Storm实时计算 Flink 图中涉及的技术名词解释如下: 1)Sqoop:Sqoop 是一款开源的工具,主要用于在 Hadoop、Hive 与传统的数据库(MySQL) 间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进 到 Hadoop 的 HDFS 中,也可以将 7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数据库。 8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张 数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的0 码力 | 35 页 | 1.70 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规0 码力 | 17 页 | 1.64 MB | 1 年前3
這些年,我們一起追的HadoopProcess 來處理 Compliant with ANSI-92 SQL Standard,所以透過 Cloudera ODBC Driver for Impala,就可以跟既有的 BI/DW 工具整合 52 / 74 Presto Facebook 主導,2012 年秋天開始發展,2013 年春天開始推 廣,作為 Facebook Data Warehouse 的 Query Execution Hadoop Real-Time Integration/Backup Between MySQL and Hadoop 64 / 74 Phoenix 內建的 CLI 工具 - Sqlline Phoenix 建議的 GUI 工具 - SQuirrel Phoenix - We put the SQL back in NoSQL Salesforce 主導 其實就是在 HBase 上頭提供一個0 码力 | 74 页 | 45.76 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)1MB 的文件设置为 128MB 的块 存储,实际使用的是 1MB 的磁盘空间,而不是 128MB。 2)解决存储小文件办法之一 HDFS 存档文件或 HAR 文件,是一个更高效的文件存档工具,它将文件存入 HDFS 块, 在减少 NameNode 内存使用的同时,允许对文件进行透明的访问。具体说来,HDFS 存档文 件对内还是一个一个独立文件,对 NameNode 而言却是一个整体,减少了 小文件解决方案 1)在数据采集的时候,就将小文件或小批数据合成大文件再上传 HDFS(数据源头) 2)Hadoop Archive(存储方向) 是一个高效的将小文件放入 HDFS 块中的文件存档工具,能够将多个小文件打包成一 个 HAR 文件,从而达到减少 NameNode 的内存使用 3)CombineTextInputFormat(计算方向) CombineTextInputFormat0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 3.0以及未来--debug Hadoop 3介绍 • Common • HDFS 纠错码(Erasure Coding) 多个Standby Namenode Datanode内部balance工具 云计算平台的支持 • YARN • MapReduce HDFS纠错码(Erasure Coding) • 一个简单的例子 1备份: 1,0 需要额外的2位 XOR编码: 1,0 需要额外的1位0 码力 | 33 页 | 841.56 KB | 1 年前3
共 10 条
- 1













