银河麒麟服务器操作系统V4 Hadoop 软件适配手册银河麒麟服务器操作系统 V4 Hadoop 软件适配手册 天津麒麟信息技术有限公司 2019 年 5 月 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 I 目 录 目 录 ............................................................................. 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 2 1 概述 1.1 系统概述 银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 Kylin-4.0.2-server-sp2-2000-190509100 码力 | 8 页 | 313.35 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)双11、618可以动 态增加服务器 Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 meNode元数据备份。 1.5.2 YARN 架构概述 Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器。 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大 3)ApplicationMaster(AM):单个任务运行的老大 2)NodeManager(NM):单个节点服务器资源老大 4)Container:容器,相当一台独立的服务器,里面封装了 任务运行所需要的资源,如内存、CPU、磁盘、网络等。 NodeManager Container NodeManager Container NodeManager0 码力 | 35 页 | 1.70 MB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据讲,我们用一个表函数来实现,这个表函数使用 DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop Map-Reduce 作业。该表函数与映射器 (mapper) 之 间使用 Oracle 高级队列特性进行通信。Hadoop mapper 将数据排入一个公共队列,而表函数则 从该队列中取出数据。由于该表函数能够并行运行,因此使用额外的逻辑来确保仅有一个服 并行处理集成 Hadoop 数据 图 2. 利用表函数进行并行处理 由于表函数可以并行运行,Hadoop 流作业也可以不同程度地并行运行,并且后者不受 Oracle 查询协调器的控制,这种情况下,队列能提供负载平衡。 4 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 利用表函数的示例 下面我们将以一个实际示例展示图 下图是图 2 中原始示意图在技术上更准确、更具体的展示,解释了我们要在何处、如何使用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 着处理角色。0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据集成与Hadoop - IBMHadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 那么很可能无法达到预期的效果。为发挥大数据措施的整体 业务价值,对于大部分Hadoop项目的大数据集成而言,海 量数据可扩展性是必不可少的。海量数据可扩展性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 连续 单处理器 SMP系统 MPP群集系统或GRID 4 路并行 64 路并行 CPU CPU CPU CPU CPU 内存 共享内存 磁盘 磁盘 关键成功因素:大数据集成平台必须支持全部三个维度的可 扩展性 • 线性数据可扩展性:硬件和软件系统通过线性增加硬件 资源来线性提高处理吞吐量。例如,如果在50个处理器 上运行4小时可以处理200GB数据,在100个处理器上运 行4小0 码力 | 16 页 | 1.23 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 就在本地,所以该副本不参与测试 一共参与测试的文件:10 个文件 * 2 个副本 = 20 个 压测后的速度:1.61 实测速度:1.61M/s * 20 个文件 ≈ 32M/s 三台服务器的带宽:12.5 + 12.5 + 12.5 ≈ 30m/s 所有网络资源都已经用满。 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 -mapreduce-client- jobclient-3.1.3-tests.jar TestDFSIO -clean 3)测试结果分析:为什么读取文件速度大于网络带宽?由于目前只有三台服务器,且有三 个副本,数据读取就近原则,相当于都是读取的本地磁盘数据,没有走网络。 第 3 章 HDFS—多目录 3.1 NameNode 多目录配置 1)NameNode 的本地目录0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 概述MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 都由一个路径来标识,路径元素由斜杠(/)分隔。 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS Hadoop 是一个单一功能的分布式系统,为了并行读取数据集并 提供更高的吞吐量,它与群集中的机器进行直接交互。可将 Hadoop 想象为一个动力车间,它让单个 CPU 运行在群集中大量低成本的机 器上。既然已经介绍了用于读取数据的工具,下一步便是用 MapReduce 来处理它。 1.1.3 MapReduce 是什么 MapReduce 是 Hadoop 的一个编程组件,用于处理和读取大型0 码力 | 17 页 | 583.90 KB | 1 年前3
大数据时代的Intel之Hadoop位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系 块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要求计算机系统具备支持英特尔超线程(HT)技术的英特尔® 奔腾® 4 处理器、支持超线程(HT)技术的芯片组、基本输入输出系统、BIOS 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map,struct) * 支持 Java、Python 语言的 搬站信息”表单,需提供如下信息: Hadoop 类型和版本(CDH 自建、CDH 云上自建、Hadoop IDC 自建、Hadoop 云上自建、 云上托管 EMR) 集群规模(服务器台数) Alibaba Cloud MaxCompute 解决方案 25 网络环境(私有网络、经典网络、VPC 专) 有无专线 常用组件(Hive、Spar 58.82 Alibaba Cloud MaxCompute 解决方案 28 6.3.2 资源评估 评 估 系 统 会 根 据 客 户 的 集 群 规 模 、 服 务 器 配 置 、 数 据 量 和 作 业 量 等 信 息 , 估 算 出 在 MaxCompute 相应的资源购买规格建议:1)计费模式:预付费/后付费;2)规格:CU 数和 存储规格等。 6.30 码力 | 59 页 | 4.33 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ Variety - 数据种类 Decision Tree (fitctree) – Linear Classification with Random Kernel Expansion (fitckernel) 16 应用演示 – 汽车传感器数据分析 ▪ 1300 trip log files ▪ 21 unique vehicles ▪ Approx 39 unique channels ▪ Data collected over0 码力 | 17 页 | 1.64 MB | 1 年前3
Hadoop 3.0以及未来MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能 • 带来一些不兼容性0 码力 | 33 页 | 841.56 KB | 1 年前3
共 10 条
- 1













