 尚硅谷大数据技术之Hadoop(生产调优手册)MaxHeapSize = 1031798784 (984.0MB) 查看发现 hadoop102 上的 NameNode 和 DataNode 占用内存都是自动分配的,且相等。 不是很合理。 经验参考: https://docs.cloudera.com/documentation/enterprise/6/release- notes/t int(20*math.log(3)) 21 >>> quit() 1.3 开启回收站配置 开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、 备份等作用。 1)回收站工作机制 尚硅谷大数据技术之 Hadoop(生产调优手册) ——————————————————————————————————————— 更多 Java –大数据 dfs.namenode.safemode.extension:稳定时间,默认值 30000 毫秒,即 30 秒 4)基本语法 集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模 式。 (1)bin/hdfs dfsadmin -safemode get (功能描述:查看安全模式状态) (2)bin/hdfs dfsadmin -safemode enter0 码力 | 41 页 | 2.32 MB | 1 年前3 尚硅谷大数据技术之Hadoop(生产调优手册)MaxHeapSize = 1031798784 (984.0MB) 查看发现 hadoop102 上的 NameNode 和 DataNode 占用内存都是自动分配的,且相等。 不是很合理。 经验参考: https://docs.cloudera.com/documentation/enterprise/6/release- notes/t int(20*math.log(3)) 21 >>> quit() 1.3 开启回收站配置 开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、 备份等作用。 1)回收站工作机制 尚硅谷大数据技术之 Hadoop(生产调优手册) ——————————————————————————————————————— 更多 Java –大数据 dfs.namenode.safemode.extension:稳定时间,默认值 30000 毫秒,即 30 秒 4)基本语法 集群处于安全模式,不能执行重要操作(写操作)。集群启动完成后,自动退出安全模 式。 (1)bin/hdfs dfsadmin -safemode get (功能描述:查看安全模式状态) (2)bin/hdfs dfsadmin -safemode enter0 码力 | 41 页 | 2.32 MB | 1 年前3
 Spark 简介以及与 Hadoop 的对比题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的 Lineage 记录的是粗颗粒度的特定数据转换(Transformation) 操作(filter, map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过 Dependencies,这种计算的输入和输出在不同的节点上,lineage 方法对与输入节点完好, 而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为 无法重试,需要向上其祖先追溯看是否可以重试(这就是 lineage,血统的意思),Narrow Dependencies 对于数据的重算开销要远小于 Wide Dependencies 的数据重算开销。 1.2.4 容错0 码力 | 3 页 | 172.14 KB | 1 年前3 Spark 简介以及与 Hadoop 的对比题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的 Lineage 记录的是粗颗粒度的特定数据转换(Transformation) 操作(filter, map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过 Dependencies,这种计算的输入和输出在不同的节点上,lineage 方法对与输入节点完好, 而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为 无法重试,需要向上其祖先追溯看是否可以重试(这就是 lineage,血统的意思),Narrow Dependencies 对于数据的重算开销要远小于 Wide Dependencies 的数据重算开销。 1.2.4 容错0 码力 | 3 页 | 172.14 KB | 1 年前3
 大数据集成与Hadoop - IBM将大数据集成处理推向数据,而不是将数据推向处理:指定 可在RDBMS、Hadoop和ETL网格中执行的适当流程。 2. 避免手动编码:手动编码费用昂贵,而且无法有效适应快速 频繁的调整。另外,手动编码不支持自动收集对数据治理至关 重要的设计和操作元数据。 3. 不要为RDBMS、Hadoop和ETL网格创建单独的集成开 发环境:这种做法没有任何实际意义,而且支持费用非常昂 贵。您应该能够构建一次作业,然后即可在三个环境中的任意 行了均衡 优化。均衡优化可生成Jaql代码,以便在MapReduce环 境中本机运行它。Jaql自带优化器,该优化器会分析所生成 的代码,并将其优化到map组件和reduce组件中。这样 可自动执行传统的复杂开发任务,并让开发人员不必再为 MapReduce架构而担忧。 InfoSphere DataStage可直接在Hadoop节点上运行, 而不必像一些供应商实施计划要求的那样在单独的配置节 要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 的逻辑推送到RDBMS。 • 数据质量受到影响。 • 关键任务(如数据剖析)无法实现自动化-在很多情况下 根本无法执行。 • 未实施有效的数据治理(数据管理、数据沿袭、影响分 析),因而响应法规要求变得更加困难且非常昂贵,对 关键业务数据的信心更无从谈起。 相反,采用海量可扩展数据集成平台来优化大数据集成工作0 码力 | 16 页 | 1.23 MB | 1 年前3 大数据集成与Hadoop - IBM将大数据集成处理推向数据,而不是将数据推向处理:指定 可在RDBMS、Hadoop和ETL网格中执行的适当流程。 2. 避免手动编码:手动编码费用昂贵,而且无法有效适应快速 频繁的调整。另外,手动编码不支持自动收集对数据治理至关 重要的设计和操作元数据。 3. 不要为RDBMS、Hadoop和ETL网格创建单独的集成开 发环境:这种做法没有任何实际意义,而且支持费用非常昂 贵。您应该能够构建一次作业,然后即可在三个环境中的任意 行了均衡 优化。均衡优化可生成Jaql代码,以便在MapReduce环 境中本机运行它。Jaql自带优化器,该优化器会分析所生成 的代码,并将其优化到map组件和reduce组件中。这样 可自动执行传统的复杂开发任务,并让开发人员不必再为 MapReduce架构而担忧。 InfoSphere DataStage可直接在Hadoop节点上运行, 而不必像一些供应商实施计划要求的那样在单独的配置节 要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 的逻辑推送到RDBMS。 • 数据质量受到影响。 • 关键任务(如数据剖析)无法实现自动化-在很多情况下 根本无法执行。 • 未实施有效的数据治理(数据管理、数据沿袭、影响分 析),因而响应法规要求变得更加困难且非常昂贵,对 关键业务数据的信心更无从谈起。 相反,采用海量可扩展数据集成平台来优化大数据集成工作0 码力 | 16 页 | 1.23 MB | 1 年前3
 Hadoop 迁移到阿里云MaxCompute 技术方案.................................................................................. 18 4.2.2 数据迁移自动化 ................................................................................................. .................... 42 Alibaba Cloud MaxCompute 解决方案 4 6.5.1 Hive SQL -> MaxCompute SQL 自动转换 ..................................................................... 42 6.5.2 UDF、MR 迁移 .... 分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。  数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 Alibaba Cloud MaxCompute 解决方案 9 2.1.3 阿里云大数据组件架构0 码力 | 59 页 | 4.33 MB | 1 年前3 Hadoop 迁移到阿里云MaxCompute 技术方案.................................................................................. 18 4.2.2 数据迁移自动化 ................................................................................................. .................... 42 Alibaba Cloud MaxCompute 解决方案 4 6.5.1 Hive SQL -> MaxCompute SQL 自动转换 ..................................................................... 42 6.5.2 UDF、MR 迁移 .... 分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。  数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 Alibaba Cloud MaxCompute 解决方案 9 2.1.3 阿里云大数据组件架构0 码力 | 59 页 | 4.33 MB | 1 年前3
 Hadoop 概述数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 地址。通过在分布式系统中使用 ZooKeeper,你能记录哪些服务器或服务正处于运行状态,并且能够 通过名称查看它们的状态。 如果有节点出现问题导致宕机,ZooKeeper 会采用一种通过选 举 leader 来完成自动故障切换的策略,这是它自身已经支持的解决 方案(见图 1-2)。选举 leader 是一项服务,可安装在多台机器上作为 冗余备用,但在任何时刻只有一台处于活跃状态。如果这个活跃的 第 1 章 为:生物与它们所处环境的非生物组成部分(如空气、水、土壤和矿 产)作为一个系统进行交互的共同体。基于技术的生态系统也有类似 的属性。它是产品平台的结合,由平台拥有者所开发的核心组件所 定义,辅之以自动化(机器脱离人类自主运转)企业在其周边(围绕着 一个空间)所开发的应用程序。 以 Apache 的多种可用产品和大量供应商提供的将 Hadoop 与企 业工具相集成的解决方案为基础,Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3 Hadoop 概述数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 地址。通过在分布式系统中使用 ZooKeeper,你能记录哪些服务器或服务正处于运行状态,并且能够 通过名称查看它们的状态。 如果有节点出现问题导致宕机,ZooKeeper 会采用一种通过选 举 leader 来完成自动故障切换的策略,这是它自身已经支持的解决 方案(见图 1-2)。选举 leader 是一项服务,可安装在多台机器上作为 冗余备用,但在任何时刻只有一台处于活跃状态。如果这个活跃的 第 1 章 为:生物与它们所处环境的非生物组成部分(如空气、水、土壤和矿 产)作为一个系统进行交互的共同体。基于技术的生态系统也有类似 的属性。它是产品平台的结合,由平台拥有者所开发的核心组件所 定义,辅之以自动化(机器脱离人类自主运转)企业在其周边(围绕着 一个空间)所开发的应用程序。 以 Apache 的多种可用产品和大量供应商提供的将 Hadoop 与企 业工具相集成的解决方案为基础,Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
 尚硅谷大数据技术之Hadoop(入门)Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop1020 码力 | 35 页 | 1.70 MB | 1 年前3 尚硅谷大数据技术之Hadoop(入门)Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop1020 码力 | 35 页 | 1.70 MB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 着处理角色。 在第 2 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列 中的数据0 码力 | 21 页 | 1.03 MB | 1 年前3 通过Oracle 并行处理集成 Hadoop 数据本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 着处理角色。 在第 2 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列 中的数据0 码力 | 21 页 | 1.03 MB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册节点的 Container 中,具体做事情的 Task,同样也运行与某一个 Slave 节点的 Container 中。RM, NM,AM 乃至普通的 Container 之间的通信,都是用 RPC 机制。 2 Hadoop 软件适配 2.1 解压 hadoop 软件 $ tar -xvf hadoop-2.7.7.tar.gz -C /usr/local/ $ cd /usr/local/hadoop-20 码力 | 8 页 | 313.35 KB | 1 年前3 银河麒麟服务器操作系统V4 Hadoop 软件适配手册节点的 Container 中,具体做事情的 Task,同样也运行与某一个 Slave 节点的 Container 中。RM, NM,AM 乃至普通的 Container 之间的通信,都是用 RPC 机制。 2 Hadoop 软件适配 2.1 解压 hadoop 软件 $ tar -xvf hadoop-2.7.7.tar.gz -C /usr/local/ $ cd /usr/local/hadoop-20 码力 | 8 页 | 313.35 KB | 1 年前3
 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory tall arrays ▪ 自动将数据分解成适合内存的小 “块”(chunk) ▪ 计算过程中,一次处理一个“块”(chunk) 的数据 ▪ 对tall数组(tall array)的编程方式与MATLAB 标准数组 编程方式一致0 码力 | 17 页 | 1.64 MB | 1 年前3 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory tall arrays ▪ 自动将数据分解成适合内存的小 “块”(chunk) ▪ 计算过程中,一次处理一个“块”(chunk) 的数据 ▪ 对tall数组(tall array)的编程方式与MATLAB 标准数组 编程方式一致0 码力 | 17 页 | 1.64 MB | 1 年前3
共 9 条
- 1













