大数据时代的Intel之Hadoop持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global Institute 统计和报表 虚拟大表 分中心 A 分中心 B 分中心 C 特点与优势 全局虚拟大表,访问方便 大表数据分区存放在物理分中心 接入仸何分中心可访问全局数据 高可用性 适合本地高速写入 分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版 •全面测试的企业级发行版,保证长期稳定运行,集成最新开源的和自行开发的补丁,用户可0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 3.0以及未来MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 读写分离 HBase存储 YARN Timeline Service v.2 • 可用性 流(flow) 聚合(aggregation) YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置0 码力 | 33 页 | 841.56 KB | 1 年前3
大数据集成与Hadoop - IBMETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 • 利用RDBMS服务器的多余容量 • 数据库可以较快地执行某些 流程 缺点 • 硬件和存储费用昂贵 • 查询SLA出现降级 • 并非所有ETL逻辑均可推送到0 码力 | 16 页 | 1.23 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门):MySQL,Oracle 等)中的数据导进 到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。 2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统, Flume 支持在日志系统中定制各类数据发送方,用于收集数据; 3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统;0 码力 | 35 页 | 1.70 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 生产环境,可以直接过滤掉空值;如果想保留空值,就自定义分区,将空值加随机数打 散。最后再二次聚合。 (2)能在 map 阶段提前处理,最好先在 Map 阶段处理。如:Combiner、MapJoin (3)设置多个 reduce 个数 第 9 章 Hadoop-Yarn 生产经验0 码力 | 41 页 | 2.32 MB | 1 年前3
共 5 条
- 1













