大数据集成与Hadoop - IBM希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 量数据可扩展性是必不可少的。海量数据可扩展性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 GB 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案....................................................................... 56 8.1.3 安装 MMA Agent 客户端工具 .......................................................................................... 56 8 2.1.1 主流大数据体系架构 Hadoop 及开源生态由一系列的开源组件共同组成,很多用户基于 Hadoop 及开源生态组件构 建企业数据仓库/数据湖、机器学习、实时分析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 分析型数据存储:对数据进行处理加工后,面向应用场景,将数据以结构化的方式进行存储, 以便分析工具或分析应用能够获取数据。如利用 MPP 数据仓库、Spark SQL 等支持 BI 工具 访问,利用 Hbase 实现低延迟的在线服务等 分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。 数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地0 码力 | 59 页 | 4.33 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)threads listen to requests from all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。dfs.namenode.handler.count 21 + 12.5 + 12.5 ≈ 30m/s 所有网络资源都已经用满。 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 读性能 1)测试内容:读取 HDFS 集群 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ [atguigu@hadoop102 hadoop-3.1.3]$ hdfs fsck /hdfsdata -files -blocks - locations (3)我们需要让他 HDFS 按照存储策略自行移动文件块 [atguigu@hadoop102 hadoop-3.1.3]$ hdfs mover /hdfsdata (4)再次查看文件块分布, [atguigu@hadoop102 hadoop-30 码力 | 41 页 | 2.32 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem0 码力 | 17 页 | 1.64 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)App Mstr Container Container Container MapTask ReduceTask Container ReduceTask MapTask 说明1:客户端可以有多个 说明2:集群上可以运行多个ApplicationMaster 说明3:每个NodeManager上可以有多个Container 4G内存 2CPU 4G内存 2CPU 4G内存 2CPU 数据查询 Spark Mlib 数据挖掘 Spark Streaming 实时计算 Spark Sql 数据查询 Oozie任务调度 Azkaban任务调度 业务模型、数据可视化、业务应用 Z o o k e e p e r 数 据 平 台 配 置 和 调 度 数据来源层 数据传输层 数据存储层 资源管理层 数据计算层 任务调度层 业务模型层 Storm实时计算 Flink 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开 发专门的 MapReduce 应用,十分适合数据仓库的统计分析。 9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、 名字服务、分布式同步、组服务等。 1.7 推荐系统框架图 推荐系统项目框架0 码力 | 35 页 | 1.70 MB | 1 年前3
大数据时代的Intel之Hadoop明确戒隐含的担保,包括对适用亍特定用途、适销性,戒丌侵犯仸何与利、版权戒其它知识产权的担保。 “关键业务应用”是挃当英特尔® 产品发生故障时,可能会直接戒间接地造成人员伤害戒死亡的应用。如果您针对此类关键业务应用购买戒使用英特尔产品,您应当对英特尔迚行赔偿,保 证因使用此类关键业务应用而造成的产品责仸、人员伤害戒死亡索赔中直接戒间接发生的所有索赔成本、损坏、费用以及合理的律师费丌会对英特尔及其子公司、分包商和分支机构,以及 intel.com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要求计算机系统具备支持英特尔超线程(HT)技术的英特尔®0 码力 | 36 页 | 2.50 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册银河麒麟服务器操作系统 V4 hadoop 软件适配手册 2 1 概述 1.1 系统概述 银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及 System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服务,它负责管理文件系统的命名空间和客户端对文 件的访问。NameNode 会保存文件系统的具体信息,包括文件信息、文件被分割 成具体 block 块的信息、以及每一个 block 块归属的 DataNode 的信息。对于整个 集群来说,HDFS0 码力 | 8 页 | 313.35 KB | 1 年前3
Hadoop 3.0以及未来• MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能 HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 • 支持更多的应用,包括long running的service 谢谢 Q&A0 码力 | 33 页 | 841.56 KB | 1 年前3
Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 1 利⽤安装脚本部署 利⽤安装脚本部署 在任⼀master节点下的都有 /root/install\_uhadoop\_client.sh,⽤⼾可以利⽤此脚本进⾏客⼾端的安装部署 也可以通过外⽹下载最新版本安装脚本 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 1/12 wget http://new-uhadoop.cn-bj.ufileos.c 客⼾机上需要安装客⼾端的⽤⼾名 password: 客⼾机root密码 port:客⼾机ssh连接端⼝ 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost:0 码力 | 12 页 | 135.94 KB | 1 年前3
共 12 条
- 1
- 2













