积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Hadoop(11)

语言

全部中文(简体)(9)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 大数据集成与Hadoop - IBM

    应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 系统中的多个处理器间实现线性数据可扩展性的 有效程度。 • 应用程序横向扩展:确定软件在非共享架构的多个 SMP 节点间实现线性数据可扩展性的有效程度。 图1. 海量数据可扩展性是一项大数据集成的强制要求。在大数据时代,企业必须支持MPP群集系统才能实现扩展。 支持海量数据可扩展性的需求并非只与Hadoop基础架构的出 现有关。多年来,领先的数据仓库供应商(如IBM和Teradata) 大规模并 行软件平台,有些企业采用此做法已有近20年。 久而久之,这些供应商陆续集中关注4个常见的软件架构特征, 以便为实现海量数据可扩展性提供支持,如图2所示。 IBM软件 5 图2. 海量数据可扩展性的4大特征。 大部分商业数据集成软件平台在设计时从未考虑过支持海量数 据可扩展性,这意味着在设计之初,并未考虑利用非共享大规模 并行架构。它们依靠共享的内存多线程,而非软件数据流。 息:http://ibm.co/UX1RqB 6 大数据集成与 Hadoop 优化大数据集成工作负载:一种平衡的方法 由于几乎所有Hadoop大数据用例和场景都需要首先进行大数 据集成,所以企业必须确定如何优化整个企业的此类工作负载。 一个Hadoop与大数据集成的重要用例是将大型ETL工作负载 从企业数据仓库 (EDW) 卸载下来,以便降低成本并改善查询 服务水平协议 (SLA)。该用例会引发以下问题:
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System in HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 1. 用数据库内置的 MapReduce 通过外部表进行访问 在图 1 中,我们利用 Oracle Database 11g 实现本文所述的数据库内的 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop Map-Reduce 作业。该表函数与映射器 (mapper)
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ........................................................................................ 44 7 经典用例 .................................................................................................. HDFS、对象存储服务等。  批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据进 行长 时间 处理 分析 ,并将 处理 后的 数据 写 入 新的 数据 对象 供后 续使 用。如 Hive、 MapReduce、Spark 等。 Alibaba Cloud MaxCompute 解决方案 8  实时消息采集:用于实时数据采集,可扩展、高吞吐、可靠的消息服务。如 Spark 交互式分析 Impala Presto Hawk GreenPlum 等交互式分析 MaxCompute Lightning,提供只读的交互式查 询服务 图计算 Spark GraphX MaxCompute Spark GraphX MaxCompute Graph 流式采集 Kafka Datahub,流式数据投递至 MaxCompute
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    –python 人工智能资料下载,可百度访问:尚硅谷官网 Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 MapReduce 应用,十分适合数据仓库的统计分析。 9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、 名字服务、分布式同步、组服务等。 1.7 推荐系统框架图 推荐系统项目框架 数据库(结构化数据) 文件日志(半结构化数据) 视频、ppt等(非结构化数据) Sqoop数据传递 Flume日志收集 Kafka消息队列 HDFS文件存储 HBase非关系型数据库 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术 之模板虚拟机环境准备.docx 1)hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例) (1)使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情 况 [root@hadoop100 ~]# ping www.baidu.com PING www
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    据集并 提供更高的吞吐量,它与群集中的机器进行直接交互。可将 Hadoop 想象为一个动力车间,它让单个 CPU 运行在群集中大量低成本的机 器上。既然已经介绍了用于读取数据的工具,下一步便是用 MapReduce 来处理它。 1.1.3 MapReduce 是什么 MapReduce 是 Hadoop 的一个编程组件,用于处理和读取大型 数据集。MapReduce 算法赋予了 资源管理器 数据节点 数据节点 数据节点 节点管理器 节点管理器 节点管理器 图 1-1 MapReduce 的功能使得它成为最常用的批处理工具之一。该处 理器的灵活性使其能利用自身的影响力来挑战现有系统。通过将数 据处理的工作负载分为多个并行执行的任务,MapReduce 允许其用 户处理存储于 HDFS 上不限数量的任意类型的数据。因此,MapReduce 让 Hadoop ZooKeeper 的一个客户端改变集中式配置,便能改变分布式系 统的状态。 名称服务是将某个名称映射为与该名称相关信息的服务。它类 似于活动目录,作为一项名称服务,活动目录的作用是将某人的用 户 ID(用户名)映射为环境中的特定访问或权限。同样,DNS 服务作 为名称服务,将域名映射为 IP 地址。通过在分布式系统中使用 ZooKeeper,你能记录哪些服务器或服务正处于运行状态,并且能够
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 20 个 压测后的速度:1.61 实测速度:1.61M/s * 20 个文件 ≈ 32M/s 三台服务器的带宽:12.5 + 12.5 + 12.5 ≈ 30m/s 所有网络资源都已经用满。 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 总数=6),就可以得到原始数据。每个单元的大小是 1024k=1024*1024=1048576。 RS-LEGACY-6-3-1024k:策略和上面的 RS-6-3-1024k 一样,只是编码的算法用的是 rs- legacy。 XOR-2-1-1024k:使用 XOR 编码(速度比 RS 编码快),每 2 个数据单元,生成 1 个校 验单元,共 3 个单元,也就是说:这 3 个单元中,只要有任意的
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    是英特尔公司在美国和/戒其他国家戒地区的商标。 英特尔® 主劢管理技术要求平台采用支持英特尔主劢管理技术的芯片组、网络硬件和软件。系统必须接通电源幵建立网络连接。就笔记本电脑而言,英特尔主劢管理技术可能在基亍主机操 作系统的虚拟与用网(VPN)上,戒者在无线连接、使用电池电源、睡眠、休眠戒关机时无法使用戒是某些功能受到限制。如欲了解更多信息,请访问:httP: //www.intel.com/technology/iamt。 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要求计算机系统具备支持英特尔超线程(HT)技术的英特尔® com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对 BIOS 迚行更新。相关应用软件可能无法不所有的操作系统兼容。请咨询您的应用厂商以了解具体信息。 *文
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    ... 7 3.3 启动 RESOURCEMANAGER 和 NODEMANAGER 守护进程 .......................... 7 4 执行 WORDCOUNT 测试用例 .............................................................................. 7 银河麒麟服务器操作系统 V4 Slave 节点的 Container 中,具体做事情的 Task,同样也运行与某一个 Slave 节点的 Container 中。RM, NM,AM 乃至普通的 Container 之间的通信,都是用 RPC 机制。 2 Hadoop 软件适配 2.1 解压 hadoop 软件 $ tar -xvf hadoop-2.7.7.tar.gz -C /usr/local/ $ cd sbin/start-dfs.sh 3.3 启动 ResourceManager 和 NodeManager 守护进程 $ sbin/start-yarn.sh 4 执行 wordcount 测试用例 $ bin/hdfs dfs -ls / $ bin/hdfs dfs -mkdir /input $ bin/hdfs dfs -put /usr/local/hadoop-2.7
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    UHadoop集群默认配置2个Master节点,同⼀时刻只有⼀个节点Namenode处于Active状态,另⼀个处于Standby状态。下⾯以uhadoop-******-master1的Namenode为Active为例 数据准备 touch uhadoop.txt echo "uhadoop" > uhadoop.txt 创建⽂件请求 curl -i -X PUT "http://uhadoop-**** r1:14000/webhdfs/v1/tmp/httpfs_uhadoop.txt?op=DELETE&user.name=root" 2.4 MapReduce Job 以terasort为例,说明如何提交⼀个MapReduce Job ⽣成官⽅terasort input数据集 hadoop jar /home/hadoop/hadoop-examples.jar teragen 100 dfsadmin -report 2.5.3 修改 修改HDFS⽂件副本数量 ⽂件副本数量 hdfs dfs -setrep -R [replication-factor] [targetDir] ⽰例:修改HDFS 根⽬录下⽂件副本数量为2,hdfs dfs -setrep -R 2 / 2.5.4 查看 查看HDFS⽂件系统状态 ⽂件系统状态 Hadoop开发指南 Copyright © 2012-2021
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    關技術的推廣,主要包括 Hadoop Platform 與 NoSQL 等 Big Data 相關 應用,Google App Engine、Microsoft Azure 與 CloudBees 等雲端平台的運 用,以及 Android、Windows Phone 等 Smart Phone 的應用程式開發。 PS. 除了我的照片之外,投影片裡頭 所有的圖片都來自於 Google Search,版權歸原來各網站與企業所 希望把 Hadoop 從 Batch 應用變成 Data Operating System: 透過 MapReduce 進行 Batch Processing 透過 Hive 與 Tez 進行 Interactive SQL Query ... 15 / 74 MapReduce 改造前 Hadoop 原來的架構,MapReduce 是一切應用的基礎 所有 Job 都得轉換成 MapReduce YARN 上頭另外發展 Tez、Storm、Giraph、Spark、 OpenMPI、... 18 / 74 MapReduce 改造 Phase 3 把原先跑在 MapReduce 上的應用 (Hive、Pig),搬到更適合的 Computing Framework (比方說 Tez) 19 / 74 HDFS 也變強了: High Availability 可以有多個 Namespace
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
大数集成HadoopIBM通过Oracle并行处理并行处理数据迁移阿里MaxCompute技术方案硅谷入门概述生产调优手册时代Intel银河麒麟服务务器服务器操作系统操作系统V4软件适配开发指南這些我們一起
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩