银河麒麟服务器操作系统V4 Hadoop 软件适配手册.............................. 4 2.2 配置文件修改 ..................................................................................................... 4 2.2.1 配置 HADOOP-ENV.SH ......................... ............................... 4 2.2.2 配置 YARN-ENV.SH ....................................................................................... 5 2.2.3 配置 CORE-SITE.XML ............................ ................................ 5 2.2.4 配置 HDFS-SIZE.XML .................................................................................... 5 2.2.5 配置 MAPRED-SITE.XML ..........................0 码力 | 8 页 | 313.35 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)Streaming 实时计算 Spark Sql 数据查询 Oozie任务调度 Azkaban任务调度 业务模型、数据可视化、业务应用 Z o o k e e p e r 数 据 平 台 配 置 和 调 度 数据来源层 数据传输层 数据存储层 资源管理层 数据计算层 任务调度层 业务模型层 Storm实时计算 Flink 图中涉及的技术名词解释如下: 1)Sqoop:Sqoop 语句快速实现简单的 MapReduce 统计,不必开 发专门的 MapReduce 应用,十分适合数据仓库的统计分析。 9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、 名字服务、分布式同步、组服务等。 1.7 推荐系统框架图 推荐系统项目框架 数据库(结构化数据) 文件日志(半结构化数据) 视频、ppt等(非结构化数据) Sqoop数据传递 Flume日志收集 ————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术 之模板虚拟机环境准备.docx 1)hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例) (1)使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情 况 [root@hadoop1000 码力 | 35 页 | 1.70 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案............................................................................... 44 7.1.2 解压工具包,并配置 MaxCompute 连接信息 ................................................................. 45 7.1.3 运行 meta-carrier MaxCompute 内建支持的上百种机器学习算法,目前 MaxCompute 的机器学习能力由 PAI 产品进行统一提供 服务,同时 PAI 提供了深度学习框架、Notebook 开发 环境、GPU 计算资源、模型在线部署的弹性预测服务。 MaxCompute 的数据对 PAI 产品无缝集成。 存储 Pangu 阿里自研分布式存储服务,类似 HDFS。MaxCompute 对外目前只暴露表接口,不能直接访问文件系统。 Tunnel 不暴露文件系统,通过 Tunnel 进行批量数据上传下载。 流式接入 Datahub MaxCompute 配套的流式数据接入服务,粗略地类似 kafka,能够通过简单配置归档 topic 数据到 MaxCompute 表 用户接口 CLT/SDK 统一的命令行工具和 JAVA/PYTHON SDK 开发&诊断 Dataworks/Studio/Logview0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 概述Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 是一个适用于这 些商业模型的解决方案。 1.1.1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基 本进程,例如对底层操作系统及其文件系统的抽象。Hadoop Hadoop 的脚本。Hadoop Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大0 码力 | 17 页 | 583.90 KB | 1 年前3
Spark 简介以及与 Hadoop 的对比map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 Narrow Dependencies 与 Wide Dependencies 用 来解决数据容错的高效性。Narrow 各个处理节点 之间的通信模型不再像 Hadoop 那样就是唯一的 Data Shuffle 一种模式。用户可以命名, 物化,控制中间结果的存储、分区等。可以说编程模型比 Hadoop 更灵活。 3. 由于 RDD 的特性,Spark 不适用那种异步细粒度更新状态的应用,例如 web 服务的存 储或者是增量的 web 爬虫和索引。就是对于那种增量修改的应用模型不适合。 2.3 容错性0 码力 | 3 页 | 172.14 KB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算)0 码力 | 17 页 | 1.64 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m 3)Hadoop3.x 系列,配置 NameNode 内存 (1)hadoop-env.sh 中描述 Hadoop 的内存是动态分配的 # The maximum amount ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.2 NameNode 心跳并发配置 1)hdfs-site.xml The number of Namenode RPC server threads that listen to requests from clients0 码力 | 41 页 | 2.32 MB | 1 年前3
大数据时代的Intel之Hadoop//www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对0 码力 | 36 页 | 2.50 MB | 1 年前3
大数据集成与Hadoop - IBM并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 有它们,该平台将无法处理大量的大数据。 InfoSphere Information Server数据集成产品组合 支持4 可自动执行传统的复杂开发任务,并让开发人员不必再为 MapReduce架构而担忧。 InfoSphere DataStage可直接在Hadoop节点上运行, 而不必像一些供应商实施计划要求的那样在单独的配置节 点上运行。在与IBM General Parallel File System (GPFS™)-FPO搭配使用时,该功能有助于降低网络流量, 这样即可在Hadoop环境中提供符合POSIX要求的存储子0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 3.0以及未来流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN YARN Timeline Service v.2 YARN Federation 劢态资源配置 容器资源的劢态调整 资源隔离 调度的增强 YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 聚合(aggregation) YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 • 网络IO的隔离- YARN-21400 码力 | 33 页 | 841.56 KB | 1 年前3
共 12 条
- 1
- 2













