 Hadoop 迁移到阿里云MaxCompute 技术方案及开源生态与阿里云大数据生态对比 2.1.1 主流大数据体系架构 Hadoop 及开源生态由一系列的开源组件共同组成,很多用户基于 Hadoop 及开源生态组件构 建企业数据仓库/数据湖、机器学习、实时分析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括:  数据源:数据源包括关系型数据库、日志文件、实时消息等。  实时消息采集:用于实时数据采集,可扩展、高吞吐、可靠的消息服务。如 Kafka。  流处理:对实时数据进行低延迟流式计算的服务。如 Flink、Spark Streaming、Storm 等。  机器学习:满足机器学习工作负载的服务。如当前流行的 Spark MLib/ML、Tensorflow 等。  分析型数据存储:对数据进行处理加工后,面向应用场景,将数据以结构化的方式进行存储, 以便分析工具或分析应用能够获取数据。如利用 批处理(MaxCompute MapReduce/SQL/Spark) EMR 对应组件 Alibaba Cloud MaxCompute 解决方案 10 机器学习 Spark Mlib/ML Tensorflow PAI 机器学习平台 MaxCompute Spark 实时消息采集 Kafka Datahub 日志服务(LogHub 组件) 消息队列 Kafka0 码力 | 59 页 | 4.33 MB | 1 年前3 Hadoop 迁移到阿里云MaxCompute 技术方案及开源生态与阿里云大数据生态对比 2.1.1 主流大数据体系架构 Hadoop 及开源生态由一系列的开源组件共同组成,很多用户基于 Hadoop 及开源生态组件构 建企业数据仓库/数据湖、机器学习、实时分析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括:  数据源:数据源包括关系型数据库、日志文件、实时消息等。  实时消息采集:用于实时数据采集,可扩展、高吞吐、可靠的消息服务。如 Kafka。  流处理:对实时数据进行低延迟流式计算的服务。如 Flink、Spark Streaming、Storm 等。  机器学习:满足机器学习工作负载的服务。如当前流行的 Spark MLib/ML、Tensorflow 等。  分析型数据存储:对数据进行处理加工后,面向应用场景,将数据以结构化的方式进行存储, 以便分析工具或分析应用能够获取数据。如利用 批处理(MaxCompute MapReduce/SQL/Spark) EMR 对应组件 Alibaba Cloud MaxCompute 解决方案 10 机器学习 Spark Mlib/ML Tensorflow PAI 机器学习平台 MaxCompute Spark 实时消息采集 Kafka Datahub 日志服务(LogHub 组件) 消息队列 Kafka0 码力 | 59 页 | 4.33 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(入门)Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce Hadoop的logo 1.3 Hadoop 三大发行版本(了解) Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks 文档较好,对应产品 HDP。2011 Hortonworks 现在已经被 Cloudera 8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张 数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开 发专门的 MapReduce 应用,十分适合数据仓库的统计分析。 9)ZooKeeper:它是一个针对大型分布0 码力 | 35 页 | 1.70 MB | 1 年前3 尚硅谷大数据技术之Hadoop(入门)Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce Hadoop的logo 1.3 Hadoop 三大发行版本(了解) Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks 文档较好,对应产品 HDP。2011 Hortonworks 现在已经被 Cloudera 8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张 数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运 行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开 发专门的 MapReduce 应用,十分适合数据仓库的统计分析。 9)ZooKeeper:它是一个针对大型分布0 码力 | 35 页 | 1.70 MB | 1 年前3
 Hadoop 3.0以及未来据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍  Common  HDFS  YARN  MapReduce 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common  JDK 8+ 升级  Classpath隔离  Shell脚本的重构 • HDFS Journal Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation 0 码力 | 33 页 | 841.56 KB | 1 年前3 Hadoop 3.0以及未来据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍  Common  HDFS  YARN  MapReduce 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common  JDK 8+ 升级  Classpath隔离  Shell脚本的重构 • HDFS Journal Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation 0 码力 | 33 页 | 841.56 KB | 1 年前3
 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; tall array – 一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等… – 支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory Tall支持的大数据可视化 ▪ plot ▪ scatter ▪ binscatter ▪ histogram ▪ histogram2 ▪ ksdensity 15 tall 支持的大数据机器学习算法 – K-means Clustering (kmeans) – Linear Regression (fitlm) – Logistic & Generalized Linear Regression0 码力 | 17 页 | 1.64 MB | 1 年前3 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; tall array – 一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等… – 支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory Tall支持的大数据可视化 ▪ plot ▪ scatter ▪ binscatter ▪ histogram ▪ histogram2 ▪ ksdensity 15 tall 支持的大数据机器学习算法 – K-means Clustering (kmeans) – Linear Regression (fitlm) – Logistic & Generalized Linear Regression0 码力 | 17 页 | 1.64 MB | 1 年前3
 Spark 简介以及与 Hadoop 的对比Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 RDD) 1.0 码力 | 3 页 | 172.14 KB | 1 年前3 Spark 简介以及与 Hadoop 的对比Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 RDD) 1.0 码力 | 3 页 | 172.14 KB | 1 年前3
 Hadoop 概述管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 在其网站上明确 指出,如果你还在努力学习如何管理 Linux 环境的话,那么 Hadoop 并不是你能够应付的任务。建议在尝试安装 Hadoop 之前,你需要 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop 是一个单一功能的分布式系统,为了并行读取数据集并 提供更高的吞吐量,它与群集中的机器进行直接交互。可将 Hadoop 想象为一个动力车间,它让单个 CPU 运行在群集中大量低成本的机 器上。既然已经介绍了用于读取数据的工具,下一步便是用 MapReduce 来处理它。 1 如果有节点出现问题导致宕机,ZooKeeper 会采用一种通过选 举 leader 来完成自动故障切换的策略,这是它自身已经支持的解决 方案(见图 1-2)。选举 leader 是一项服务,可安装在多台机器上作为 冗余备用,但在任何时刻只有一台处于活跃状态。如果这个活跃的 第 1 章 Hadoop 概述 7 服务因为某些原因发生了故障,另一个服务则会起来继续它的工作。 LEADER0 码力 | 17 页 | 583.90 KB | 1 年前3 Hadoop 概述管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 在其网站上明确 指出,如果你还在努力学习如何管理 Linux 环境的话,那么 Hadoop 并不是你能够应付的任务。建议在尝试安装 Hadoop 之前,你需要 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop 是一个单一功能的分布式系统,为了并行读取数据集并 提供更高的吞吐量,它与群集中的机器进行直接交互。可将 Hadoop 想象为一个动力车间,它让单个 CPU 运行在群集中大量低成本的机 器上。既然已经介绍了用于读取数据的工具,下一步便是用 MapReduce 来处理它。 1 如果有节点出现问题导致宕机,ZooKeeper 会采用一种通过选 举 leader 来完成自动故障切换的策略,这是它自身已经支持的解决 方案(见图 1-2)。选举 leader 是一项服务,可安装在多台机器上作为 冗余备用,但在任何时刻只有一台处于活跃状态。如果这个活跃的 第 1 章 Hadoop 概述 7 服务因为某些原因发生了故障,另一个服务则会起来继续它的工作。 LEADER0 码力 | 17 页 | 583.90 KB | 1 年前3
 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 /v1/tmp/uhadoop.txt?op=CREATE" Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 6/12 注解: 1. 需要在执⾏此命令机器加上集群所有节点host 2. 若提⽰Operation category READ is not supported in state standby,请更换uhadoop-******-master2尝试 的http接⼝,可以通过WebHDFS REST API对HDFS进⾏读写等访问。与WebHDFS的区别是,Httpfs不需要客⼾端访问集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright0 码力 | 12 页 | 135.94 KB | 1 年前3 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 /v1/tmp/uhadoop.txt?op=CREATE" Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 6/12 注解: 1. 需要在执⾏此命令机器加上集群所有节点host 2. 若提⽰Operation category READ is not supported in state standby,请更换uhadoop-******-master2尝试 的http接⼝,可以通过WebHDFS REST API对HDFS进⾏读写等访问。与WebHDFS的区别是,Httpfs不需要客⼾端访问集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright0 码力 | 12 页 | 135.94 KB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输 银河麒麟服务器操作系统V4 Hadoop 软件适配手册HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输- dfs.replication - 1 - 副本个数,配置默认是 3,应小于 datanode 机器数量 2.2.5 配置 mapred-site.xml $ cp mapred-site.xml0 码力 | 8 页 | 313.35 KB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)注意:由于 HDFS 需要启动单独的 Rebalance Server 来执行 Rebalance 操作,所以尽量 不要在 NameNode 上执行 start-balancer.sh,而是找一台比较空闲的机器。 4.4 黑名单退役服务器 黑名单:表示在黑名单的主机 IP 地址不可以,用来存储数据。 企业中:配置黑名单,用来退役服务器。 黑名单配置步骤如下: 1)编辑/opt/module/hadoop-3 (5)再观察上一个窗口 Safe mode is OFF (6)HDFS 集群上已经有上传的数据了 6.3 慢磁盘监控 “慢磁盘”指的时写入数据非常慢的一类磁盘。其实慢性磁盘并不少见,当机器运行时 间长了,上面跑的任务多了,磁盘的读写性能自然会退化,严重时就会出现写入数据延时的 尚硅谷大数据技术之 Hadoop(生产调优手册) —————— 环形缓冲区溢出的阈值,默认80% ,可以提高的90% 9)异常重试 mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.0 码力 | 41 页 | 2.32 MB | 1 年前3 尚硅谷大数据技术之Hadoop(生产调优手册)注意:由于 HDFS 需要启动单独的 Rebalance Server 来执行 Rebalance 操作,所以尽量 不要在 NameNode 上执行 start-balancer.sh,而是找一台比较空闲的机器。 4.4 黑名单退役服务器 黑名单:表示在黑名单的主机 IP 地址不可以,用来存储数据。 企业中:配置黑名单,用来退役服务器。 黑名单配置步骤如下: 1)编辑/opt/module/hadoop-3 (5)再观察上一个窗口 Safe mode is OFF (6)HDFS 集群上已经有上传的数据了 6.3 慢磁盘监控 “慢磁盘”指的时写入数据非常慢的一类磁盘。其实慢性磁盘并不少见,当机器运行时 间长了,上面跑的任务多了,磁盘的读写性能自然会退化,严重时就会出现写入数据延时的 尚硅谷大数据技术之 Hadoop(生产调优手册) —————— 环形缓冲区溢出的阈值,默认80% ,可以提高的90% 9)异常重试 mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.0 码力 | 41 页 | 2.32 MB | 1 年前3
 大数据集成与Hadoop - IBM选择。有关更多信息,请访问:ibm.com/financing © 版权所有IBM Corporation 2014 国际商业机器中国有限公司 北京市朝阳区北四环中路27号 盘古大观写字楼 邮编: 100101 在中国印刷 2014年12月 保留所有权利 IBM、IBM徽标和ibm.com是国际商业机器公司在全球许多司法管辖区注 册的商标。其他产品和服务名称可能是IBM或其他公司的商标。可在网络上获 得最新的IBM商标列表,请访问ibm0 码力 | 16 页 | 1.23 MB | 1 年前3 大数据集成与Hadoop - IBM选择。有关更多信息,请访问:ibm.com/financing © 版权所有IBM Corporation 2014 国际商业机器中国有限公司 北京市朝阳区北四环中路27号 盘古大观写字楼 邮编: 100101 在中国印刷 2014年12月 保留所有权利 IBM、IBM徽标和ibm.com是国际商业机器公司在全球许多司法管辖区注 册的商标。其他产品和服务名称可能是IBM或其他公司的商标。可在网络上获 得最新的IBM商标列表,请访问ibm0 码力 | 16 页 | 1.23 MB | 1 年前3
共 10 条
- 1













