大数据时代的Intel之Hadoop包商在英特尔产品戒其仸何部件的设计、制造戒警示环节是否出现疏忽大意的情冴。 英特尔可以随时在丌发布声明的情冴下修改规格和产品说明。设计者丌应信赖仸何英特产品所丌具有的特性,设计者亦丌应信赖仸何标有保留权利摂戒未定义摂说明戒特性描述。英特尔保 留今后对其定义的权利,对亍因今后对其迚行修改所产生的冲突戒丌兼容性概丌负责。此处提供的信息可随时改变而毋需通知。请勿使用本信息来对某个设计做出最终决定。 尔对亍这些设备的质量、可靠性、功能戒兼容性丌提供仸何担保戒保证。本列表和/戒这些设备可随时更改,恕丌另行通知。 版权所有 © 2012 英特尔公司。所有权保留。 提纲 • 大数据时代的新挑戓 • 大数据时代的Intel • 关注产业应用,产研相亏促迚 从文明诞生到2003年,人类文明产生了 5EB的数据; 而今天,我们每两天产生5EB的数据。 Eric Schmidt 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global Institute 统计和报表 价值 数据挖掘和预测性分析 大数据时代的Intel0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案生态的产品映射 ......................................................................... 9 2.2 MaxCompute 特性介绍 ................................................................................................ ......................................................................... 11 2.2.2 MaxCompute 产品特性 .................................................................................................. 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据进 行长 时间 处理 分析 ,并将 处理 后的 数据 写 入 新的 数据 对象 供后 续使 用。如 Hive、 MapReduce、Spark 等。 Alibaba Cloud MaxCompute 解决方案 8 实时消息采集:用于实时数0 码力 | 59 页 | 4.33 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)人工智能资料下载,可百度访问:尚硅谷官网 3.3 集群数据均衡之磁盘间数据均衡 生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可 以执行磁盘数据均衡命令。(Hadoop3.x 新特性) (1)生成均衡计划(我们只有一块磁盘,不会生成计划) hdfs diskbalancer -plan hadoop103 (2)执行均衡计划 hdfs diskbalancer ——— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 4.2 服役新服务器 1)需求 随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据 的需求,需要在原有集群基础上动态添加新的数据节点。 2)环境准备 (1)在 hadoop100 主机上再克隆一台 hadoop105 主机 (2)修改 IP [atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop105 [atguigu@hadoop103 .ssh]$ ssh-copy-id hadoop105 3)服役新节点具体步骤 (1)直接启动 DataNode,即可关联到集群 [atguigu@hadoop105 hadoop-3.1.3]$ hdfs --daemon start datanode [atguigu@hadoop1050 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 概述ZooKeeper 是另一项 Hadoop 服务——分布式系统环境下的信 息保管员。ZooKeeper 的集中管理解决方案用于维护分布式系统的 配置。由于 ZooKeeper 用于维护信息,因此任何新节点一旦加入系 统,将从 ZooKeeper 中获取最新的集中式配置。这也使得你只需要 通过 ZooKeeper 的一个客户端改变集中式配置,便能改变分布式系 统的状态。 名称服务是将某个名称映射为与该名称相关信息的服务。它类 为获取最大的利益,了解如何能让 Hadoop 和现有环境一起工作以 及该如何利用现有环境是非常重要的。 第 1 章 Hadoop 概述 9 为说明这一点,考虑一种著名的积木玩具,它允许你通过相互 连接创建新的玩具积木。仅通过将积木块简单连接在一起,你便可 以创造出无限可能。关键原因在于每块积木上的连接点。类似于积 木玩具,厂商开发了连接器以允许其他企业的系统连接到 Hadoop。 通过使用连接器,你能够引入 业工具相集成的解决方案为基础,Hadoop 的开放源码和企业生态系 统还在不断成长。HDFS是该生态系统的主要组成部分。由于Hadoop 有着低廉的商业成本,因此很容易去探索 Hadoop 的特性,无论是 通过虚拟机,还是在现有环境建立混合生态系统。使用 Hadoop 解 决方案来审查当前的数据方法以及日渐增长的供应商阵营是一种非 Hadoop 大数据解决方案 10 常好的方法。借助这些服务和工具,Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
Spark 简介以及与 Hadoop 的对比之间的通信模型不再像 Hadoop 那样就是唯一的 Data Shuffle 一种模式。用户可以命名, 物化,控制中间结果的存储、分区等。可以说编程模型比 Hadoop 更灵活。 3. 由于 RDD 的特性,Spark 不适用那种异步细粒度更新状态的应用,例如 web 服务的存 储或者是增量的 web 爬虫和索引。就是对于那种增量修改的应用模型不适合。 2.3 容错性 在RDD计算,通过ch0 码力 | 3 页 | 172.14 KB | 1 年前3
大数据集成与Hadoop - IBMIBM软件 2014 年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 资购买昂贵的EDW容量。 • 数据被转储到EDW之前未清理数据,一旦进入EDW环 境将永远无法进行清理工作,继而导致数据质量较差。 • 企业持续严重依赖手动编码SQL脚本来执行数据转换。 • 添加新数据源或修改现有ETL脚本较为昂贵并且需要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 的逻辑推送到RDBMS。 • 数据质量受到影响。0 码力 | 16 页 | 1.23 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性0 码力 | 8 页 | 313.35 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop Map-Reduce 作业。该表函数与映射器 (mapper) 之 间使用 Oracle 高级队列特性进行通信。Hadoop mapper 将数据排入一个公共队列,而表函数则 从该队列中取出数据。由于该表函数能够并行运行,因此使用额外的逻辑来确保仅有一个服 务进程提交外部作业。 3 Oracle0 码力 | 21 页 | 1.03 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; Variables ▪ Disk Variables ▪ Databases ▪ Datastore ▪ ImageDatastore 6 tall arrays ▪ tall array – 一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等…0 码力 | 17 页 | 1.64 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)jdk1.8.0_212 export PATH=$PATH:$JAVA_HOME/bin (2)保存后退出 :wq (3)source 一下/etc/profile 文件,让新的环境变量 PATH 生效 [atguigu@hadoop102 ~]$ source /etc/profile 6)测试 JDK 是否安装成功 [atguigu@hadoop102 ~]$ rsync 主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。 rsync 和 scp 区别:用 rsync 做文件的复制要比 scp 的速度快,rsync 只对差异文件做更 新。scp 是把所有文件都复制过去。 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 /opt/module/hadoop-3.1.3/etc 2)启动集群 (1)如果集群是第一次启动,需要在 hadoop102 节点格式化 NameNode(注意:格式 化 NameNode,会产生新的集群 id,导致 NameNode 和 DataNode 的集群 id 不一致,集群找 不到已往数据。如果集群在运行过程中报错,需要重新格式化 NameNode 的话,一定要先停 止 namenode0 码力 | 35 页 | 1.70 MB | 1 年前3
共 11 条
- 1
- 2













