积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Hadoop(11)

语言

全部中文(简体)(10)西班牙语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 大数据时代的Intel之Hadoop

    intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计算机系统、日期和数 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 和操作系统。实 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出。很多业界传言称,任何不可扩展的抽取、转换和加载 (ETL) 工具搭配Hadoop后都会得到高性能、高度可扩展 的数据集成平台。 的数据集成平台。 事实上,MapReduce的设计宗旨并非是对海量数据进行 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。 开始集成之旅以前,请务必了解MapReduce的性能限 制,以及数据集成供应商在解决这类问题方面的差异。请在 “Themis: An I/O-Efficient MapReduce”一文中了
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    在企业中非常关心每天从 Java 后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 100Mbps hadoop102 的/opt/module 目录,创建一个 [atguigu@hadoop102 software]$ python -m SimpleHTTPServer 2.1 测试 HDFS 写性能 0)写测试底层原理 1)测试内容:向 HDFS 集群写 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop- 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 读性能 1)测试内容:读取 HDFS 集群 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 Hadoop 3.0以及未来

    Spark、Kafka、Cassandra等开源大数据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍  Common  HDFS 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能 多个Standby Namenode Active NN Standby NN Standby NN DN DN DN DN Journal Node Journal Node YARN • MapReduce  Task层次的Native优化 MapReduce Task层次Native优化 • 对map output collector的Native实现,对于shuffle密集型的task能 带来30%的性能提升。 Hadoop 的未来 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 Hadoop 概述

    础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 GB 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 提供了一种为数据赋予结构的渠道,并且通过一种名为 HiveQL 的类 SQL 语言进行数据查询。 Hive Thrift 服务器 驱动程序 解析器 执行 Hive Web 接口 计划器 优化器 MS 客户端 元存储 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 Server 和 Windows Azure 的连通性来更好地操作 和集成 Hadoop。Informatica 软件,使用 Power Exchange 连接器协 同 Hortonworks,优化了 Hadoop 上的整条大数据供应链,将数据转 换为具有可操作性的信息来驱动商业价值。 例如,现代的数据架构正在越来越多地用于建造大型数据湖。 通过将数据管理服务集成为更大的数据湖,企业可以利用各种各样
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    MaxCompute SQL TPC-DS 100% 支持,同时语法高度兼容 Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map SET)、脚本运行模式、参 数化视图 * 支持外表(外部数据源+StorageHandler 支持非结构化 数据) MapReduce MaxCompute MR 支持 MapReduce 编程接口(提供优化增强的 MaxCompute MapReduce,也提供高度兼容 Hadoop 的 MapReduce 版本) 不暴露文件系统,输入输出都是表 通过 MaxCompute 客户端工具、Dataworks 具或应用使用默认驱动都可以轻松地连接到 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服 务等场景。 Alibaba Cloud MaxCompute 解决方案 14 Spark
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 Narrow Dependencies 与 Wide Dependencies 用 来解决数据容错的高效性。Narrow Dependencies
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 8/12 2.3.1 上传⽂件 上传⽂件 数据准备 touch httpfs_uhadoop
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
大数时代IntelHadoop集成IBM硅谷技术生产调优手册3.0以及未来概述迁移阿里MaxCompute方案银河麒麟服务务器服务器操作系统操作系统V4软件适配Spark简介对比开发指南通过Oracle并行处理并行处理数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩