积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Hadoop(13)

语言

全部中文(简体)(11)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    银河麒麟服务器操作系统 V4 Hadoop 软件适配手册 天津麒麟信息技术有限公司 2019 年 5 月 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 I 目 录 目 录 ............................................................................. 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 2 1 概述 1.1 系统概述 银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 Kylin-4.0.2-server-sp2-2000-19050910
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    2014 年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    Spark 简介以及与 Hadoop 的对比 1 Spark 简介 1.1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 RDD) 1. 转换(Transformations)
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop 概述

    与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 些数据的需求。本章探讨 Hadoop Stack,以及所有可与 Hadoop 一 起使用的相关组件。 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 都由一个路径来标识,路径元素由斜杠(/)分隔。 还有其他一些系统能与 Hadoop 进行集成并从其基础架构中受
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 com/products/data-center/hdp/ 下载地址:https://hortonworks.com/downloads/#data-platform (1)2011 年成立的 Hortonworks 是雅虎与硅谷风投公司 Benchmark Capital 合资组建。 (2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述 工程师均在 2005 年开始协助雅虎开发 双11、618可以动 态增加服务器 Hadoop102 Hadoop103 Hadoop104 Hadoop优势(4高) 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ............. 6 2 阿里云大数据与开源生态对比 .................................................................................................................. 7 2.1 Hadoop 及开源生态与阿里云大数据生态对比 ................. ................................................................................. 9 2.1.4 阿里云大数据与 Hadoop 生态的产品映射 ......................................................................... 9 2.2 MaxCompute .................................................................... 17 4 Hadoop 到 MaxCompute 迁移工具介绍 ............................................................................................ 17
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销性,戒丌侵犯仸何与利、版权戒其它知识产权的担保。 “关键业务应用”是挃当英特尔® 产品发生故障时,可能会直接戒间接地造成人员伤害戒死亡的应用。如果您针对此类关键业务应用购买戒使用英特尔产品,您应当对英特尔迚行赔偿,保 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系 块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要求计算机系统具备支持英特尔超线程(HT)技术的英特尔® 奔腾® 4 处理器、支持超线程(HT)技术的芯片组、基本输入输出系统、BIOS
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖

    MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; 5 MATLAB的大数据处理 ▪ 编程 ▪ Streaming ▪ Block Processing ▪ Parallel-for loops ▪ GPU Arrays ▪
    0 码力 | 17 页 | 1.64 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 server threads listen to requests from all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。 dfs.namenode.handler.count 就在本地,所以该副本不参与测试 一共参与测试的文件:10 个文件 * 2 个副本 = 20 个 压测后的速度:1.61 实测速度:1.61M/s * 20 个文件 ≈ 32M/s 三台服务器的带宽:12.5 + 12.5 + 12.5 ≈ 30m/s 所有网络资源都已经用满。 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    引言 许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File System in Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 中,我们利用 Oracle Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
银河麒麟服务务器服务器操作系统操作系统V4Hadoop软件适配手册大数集成IBMSpark简介以及对比概述硅谷技术入门迁移阿里MaxCompute方案时代IntelMATLAB实现数据处理价值生产调优通过Oracle并行并行处理
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩