积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Hadoop(12)

语言

全部中文(简体)(10)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m 3)Hadoop3.x 系列,配置 NameNode 内存 (1)hadoop-env.sh 中描述 Hadoop 的内存是动态分配的 # The maximum amount ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.2 NameNode 心跳并发配置 1)hdfs-site.xml The number of Namenode RPC server threads that listen to requests from clients
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ............................................................................... 44 7.1.2 解压工具包,并配置 MaxCompute 连接信息 ................................................................. 45 7.1.3 运行 meta-carrier MaxCompute 解决方案 11 2.2.1 MaxComptue 的逻辑架构 2.2.2 MaxCompute 产品特性 MaxCompute 提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建 好了 MaxCompute 计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产 品开箱即用。 功能 MaxCompute MaxCompute 支持大规模计算存储,适用于 TB 以上规 模的存储及计算需求,最大可达 EB 级别。同一个 MaxCompute 项目支持企业从创业团队发展到独角兽的 数据规模需求; 数据分布式存储,多副本冗余,数据存储对外仅开放表的 操作接口,不提供文件系统访问接口 自研数据存储结构,表数据列式存储,默认高度压缩,后 D k n e P y l w s o u ) ( ( f I w
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 Hadoop 3.0以及未来

    流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation  劢态资源配置  容器资源的劢态调整  资源隔离  调度的增强  YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 流(flow) 聚合(aggregation) YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群 劢态资源配置 • YARN-291 允许劢态的改变NM的资源配置 容器资源的劢态调整 • YARN-1197 允许运行时劢态的调整分配给容器的资源 资源隔离 • 磁盘资源的隔离- YARN-2619 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 • 支持更多的应用,包括long running的service 谢谢 Q&A
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    Hadoop 在兼容性,安 全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。 (4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一 个 Hadoop 集群,并对集群的节点及服务进行实时监控。 3)Hortonworks Hadoop 官网地址:https://hortonworks.com/products/data-center/hdp/ Hadoop 优势(4 高) Hadoop优势(4高) 1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元 素或存储出现故障,也不会导致数据的丢失。 2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 Hadoop106 双11、618可以动 态增加服务器 Hadoop102 工作的,以加快任务处 理速度。 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop102 Hadoop103 Hadoop104 计算子任务 计算子任务 计算任务汇总 计算子任务
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    .............................. 4 2.2 配置文件修改 ..................................................................................................... 4 2.2.1 配置 HADOOP-ENV.SH ......................... ............................... 4 2.2.2 配置 YARN-ENV.SH ....................................................................................... 5 2.2.3 配置 CORE-SITE.XML ............................ ................................ 5 2.2.4 配置 HDFS-SIZE.XML .................................................................................... 5 2.2.5 配置 MAPRED-SITE.XML ..........................
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    //www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost: 注解: hadoop-为hadoop具体对应的版本,可查看master的 root@master_ip:/home/hadoop/spark /root/ #pig scp -r root@master_ip:/home/hadoop/pig /root/ 修改配置 增加hosts映射,从集群master1节点上拷⻉⽂件夹到UHost: scp root@master_ip:/etc/hosts /tmp/hosts cat /tmp/hosts | grep uhadoop
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    EE 領域有十多 年的講師教學經驗,熟悉 SOAP/RESTful Services、Design Patterns、EJB/JPA 等 Java EE 規 格,Struts/Spring/Hibernate 等 Open Source Framework,與 JBoss AS、 GlassFish 等 Application Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, Task 給 TT 3. TT 執行 Task 4. TT 向 JT 回報 Hadoop 1.x 架構 - MapReduce (MRv1) 只有一個 JobTracker (Master),可是要管理多個 TaskTracker (Slave)! 10 / 74 Hadoop 1.x 架構與限制 比較基本的模組: Hadoop HDFS (Storage) Hadoop MapReduce (Computing Namespace,沒辦法分開管控 /sales、/accounting、... 只能執行 MapReduce Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task 有這麼 多? 11 / 74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing Iterative
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 有它们,该平台将无法处理大量的大数据。 InfoSphere Information Server数据集成产品组合 支持4 可自动执行传统的复杂开发任务,并让开发人员不必再为 MapReduce架构而担忧。 InfoSphere DataStage可直接在Hadoop节点上运行, 而不必像一些供应商实施计划要求的那样在单独的配置节 点上运行。在与IBM General Parallel File System (GPFS™)-FPO搭配使用时,该功能有助于降低网络流量, 这样即可在Hadoop环境中提供符合POSIX要求的存储子
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    Hadoop 的脚本。Hadoop Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
硅谷大数技术Hadoop生产调优手册迁移阿里MaxCompute方案3.0以及未来入门银河麒麟服务务器服务器操作系统操作系统V4软件适配时代Intel开发指南這些我們一起集成IBM概述
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩