大数据集成与Hadoop - IBM大数据 集成工作负载。但无论选择哪种方法,信息基础架构都必须满足 一个常见的要求:全面支持大规模可扩展处理。 某些数据集成操作在RDBMS引擎内外的运行效率较高。同样, 并非所有数据集成操作均适用于Hadoop环境。设计精妙的架 构必须足够灵活,可以充分利用系统中每个环境的优势(参见 图3)。 在ETL网格中运行 在数据库中运行 在Hadoop中运行 图3. 大数据集成需要一种可利用任何环境优势的平衡方法。 据沿袭和跨工具影响分析。 最佳实践3:可在需要运行海量可扩展数据集成的任何位置提 供该功能 Hadoop能以极低的成本对数据集成工作负载实施大规模 分布式处理。但是,客户需要的是海量可扩展数据集成解决方 案,从而实现Hadoop可以提供的各种潜在优势。 图5. 可扩展大数据集成必须适用于任何环境。 设计一次作业 随时随地运行和扩展该作业 Hadoop环境外部 Hadoop环境内部 案例 ETL 工具与Hadoop均可提供全部所需的海量可扩展数据 集成处理。事实上,MapReduce在处理大规模数据集成工 作负载方面有着很多限制: • 并 非 所 有 数 据 集 成 逻 辑 均 可 使 用 E T L 工 具 推 送 到 MapReduce。根据与广大客户的合作经验,IBM估计 约有半数的数据集成逻辑无法推送到MapReduce。 • 用户不得不通过繁复的手动编码在Hadoop中运行较为0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 ORACLE R 客户端 将 MapReduce 用于 R 计算 图 1-10 1.5 小结 通过使用 Hadoop Stack,你利用 Hadoop 在企业中实现最优方 第 1 章 Hadoop 概述 17 案,并且与混合编程和高级工具相结合。如今大多数群集都在你的 本地,但服务提供商给予了更多选择,使得数据也可以存储在云端。 目前,SQL、关系型和非关系型数据存储均可使用0 码力 | 17 页 | 583.90 KB | 1 年前3
大数据时代的Intel之Hadoop如欲获得本文戒其它英特尔文献中提及的带订单编号的文档副本,可致电 1-800-548-4725,戒访问http://www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲0 码力 | 36 页 | 2.50 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)操作优化 (1)数据倾斜 (2)Map 运行时间太长,导致 Reduce 等待过久 (3)小文件过多 8.2 MapReduce 常用调优参数 MapReduce优化(上) Map1方法 分区1 分区2 写入数据 第一次溢出 排序 第二次溢出 Combiner Combiner 归并排序 归并排序 合并 Combiner为可选流程 压缩 写磁盘 分区1 输出 分区1 输出 分区1 输出 内存缓冲 磁盘 数据 内存不够溢出到磁盘 归并 排序 分组 Reduce方法 对每个map来的 数据归并排序 按照相同key分组 Map2方法 输出数据 Map1方法 输出数据 Reduce1处理流程 拷贝 拷贝 4)mapreduce.reduce.memory.mb 默认ReduceTask内存上限1024MB, 根据128m数据对应1G内存原则,适当提高内存到4-6G 小文件弊端 HDFS 上每个文件都要在 NameNode 上创建对应的元数据,这个元数据的大小约为 150byte,这样当小文件比较多的时候,就会产生很多的元数据文件,一方面会大量占用 NameNode 的内存空间,另一方面就是元数据文件过多,使得寻址索引速度变慢。 小文件过多,在进行 MR 计算时,会生成过多切片,需要启动过多的 MapTask。每个 MapTask 处理的数据量小,导致 0 码力 | 41 页 | 2.32 MB | 1 年前3
這些年,我們一起追的HadoopPer-Application 配置,所以也不會 變成新的瓶頸。 因為 ApplicationMaster 是 Framework-Specific,所以 ResourceManager 就可以變 成是一個中立的機制,方便支援各種不同 Framework。 23 / 74 YARN - Yet Another Resource Negotiator A General-Purpose Distributed Application and RDBMS Hadoop Ecosystem 30 / 74 HCatalog Hadoop 裡頭的 Naming Service 讓各種不同技術,不需要知道資料真實存放的位置,也能夠很方便 地存取資料 31 / 74 Yahoo! 做出了 Pig,把 PigLatin 翻成一堆 MapReduce Job Facebook 做出了 Hive,把 HiveQL 翻成一堆 MapReduce Programming Java: 曾經是 MapReduce 心裡頭的唯一 現在是 YARN 裡面眾多語言的之一 Hadoop MapReduce Examples 是最基本的範例 popcorny 提供了一個方便好用的 Gradle 環境組態 因為支援 Hadoop Streaming 的關係,其實要抓蛇的、開珠寶店的也都可以喔: 61 / 74 Dataflow 是 MapReduce 的繼 承者,由數個0 码力 | 74 页 | 45.76 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)中,也可以将 HDFS 的数据导进到关系型数据库中。 2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统, Flume 支持在日志系统中定制各类数据发送方,用于收集数据; 3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统; 尚硅谷大数据技术之 Hadoop(入门) ——0 码力 | 35 页 | 1.70 MB | 1 年前3
共 6 条
- 1













