积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Hadoop(9)

语言

全部中文(简体)(8)西班牙语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    deviation:方差、反映各个 mapTask 处理的差值,越小越均衡 2)注意:如果测试过程中,出现异常 (1)可以在 yarn-site.xml 中设置虚拟内存检测为 false yarn.nodemanager.vmem-check-enabled hadoop-3.1.3]$ rm -rf data/ logs/ [atguigu@hadoop104 hadoop-3.1.3]$ rm -rf data/ logs/ (3)格式化集群并启动。 [atguigu@hadoop102 hadoop-3.1.3]$ bin/hdfs namenode -format [atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs ssh]$ ssh-copy-id hadoop105 [atguigu@hadoop103 .ssh]$ ssh-copy-id hadoop105 3)服役新节点具体步骤 (1)直接启动 DataNode,即可关联到集群 [atguigu@hadoop105 hadoop-3.1.3]$ hdfs --daemon start datanode [atguigu@hadoop105
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    上存储的大数 据进行计算。 5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。 6)Oozie:Oozie 是一个管理 Hadoop 作业(job)的工作流程调度管理系统。 7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数据库。 8)Hive:Hive 是基于 (2)etc 目录:Hadoop 的配置文件目录,存放 Hadoop 的配置文件 (3)lib 目录:存放 Hadoop 的本地库(对数据进行压缩解压缩功能) (4)sbin 目录:存放启动或停止 Hadoop 相关服务的脚本 (5)share 目录:存放 Hadoop 的依赖 jar 包、文档、和官方案例 第 3 章 Hadoop 运行模式 1)Hadoop 官方网站:http://hadoop 尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 7)单点启动 8)配置 ssh 9)群起并测试集群 3.2.1 虚拟机准备 详见 2.1、2.2 两节。 3.2.2 编写集群分发脚本 xsync 1)scp(secure copy)安全拷贝
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    ........................................................................................ 7 3 格式化并启动集群 ................................................................................................ .............................................. 7 3.2 启动 NAMENODE 和 DATANODE 守护进程 ................................................... 7 3.3 启动 RESOURCEMANAGER 和 NODEMANAGER 守护进程 ................... 上资源进行统一管理和调度。当用户提交一个应用程序时,需要提供 一个用以跟踪和管理这个程序的 ApplicationMaster,它负责向 ResourceManager 申请资源,并要求 NodeManger 启动可以占用一定资源的 任务。由于不同的 ApplicationMaster 被分布到不同的节点上,因此它们之间不会相互影响。 YARN 的基本组成结构,YARN 主要由 ResourceManager、NodeManager、
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。对此我们采用一种将具有相同键值的记录写入表的简单 机制。首个插入胜出,作为此进程的查询协调器 (QC)。请注意,QC 表函数调用同时也承担 着处理角色。 在第 2 步中,该表函数调用 (QC) 使用 dbms_scheduler(图 3 中的作业控制器)启动一个异步 作业,该作业接着在 作业,该作业接着在 Hadoop 集群上运行同步 bash 脚本。这个 bash 脚本就是图 3 中的启动程 序 (launcher),它在 Hadoop 集群上启动 mapper 进程(第 3 步)。 5 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 数据库的数据和来自队列 中的数据,并将来自两个来源的数据整合为单一结果集提供给最终用户。 图 4. 监控进程 Hadoop的进程 (mapper) 启动之后,作业监控器进程将监视启动程序脚本。一旦mapper 完成 Hadoop 集群中数据的处理之后,bash 脚本即完成,如图 4 所示。 作业监控器将监视数据库调度程序队列,并在 shell 脚本完成时发出通知(第
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    2014 年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用 Apache Hadoop 抽取、转换和加载大数据”1 ETL服务器可以较快地执行某 些流程 缺点 • ETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 • 利用RDBMS服务器的多余容量 • 数据库可以较快地执行某些 流程 缺点 • 硬件和存储费用昂贵
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    对于拥有大型数据存储或者数据湖的企业和组织来说,这是一 种重要的组件,它将数据限定到可控的大小范围内,以便用于分析 第 1 章 Hadoop 概述 5 或查询。 如图 1-1 所示,MapReduce 的工作流程就像一个有着大量齿轮 的古老时钟。在移动到下一个之前,每一个齿轮执行一项特定任务。 它展现了数据被切分为更小尺寸以供处理的过渡状态。 主节点 客户端 HDFS 分布式数据存储 计划器 优化器 MS 客户端 元存储 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 织可以更高效地确定管理大数据的需求。后续步骤包括做出关于如 何将 Hadoop 落实到现有环境的决定。 正在实现或考虑 Hadoop 的组织有可能将其引入到现有环境中。 为获取最大的利益,了解如何能让 据、服务器日志、客户交易与交互、视频以及来自现场设备的传感 器数据。 Hortonworks 或者 Cloudera 数据平台,以及 Informatica,使得 企业能够优化 ETL(抽取、转换、加载)工作流程,以便在 Hadoop 中长期存储和处理大规模数据。 Hadoop 与企业工具的集成使得组织能够将内部和外部的所有数 据用于获得完整的分析能力,并以此推动现代数据驱动业务的成功。 另一个例子,Hadoop
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    操作时只会记录需要这样的操作,并不会去执行,需要等到有 Actions 操作的时候才会真正启动计算过程进行计算。 2. 操作(Actions) (如:count, collect, save 等),Actions 操作会返回结果或把 RDD 数据写 到存储系统中。Actions 是触发 Spark 启动计算的动因。 1.2.3 血统(Lineage) 利用内存加快数据加载,在众多的其它的
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ................................................................................... 19 5 迁移整体方案及流程 .................................................................................................. 数据集成作业;迁移工具支持主流 Pipeline 工具,如 Oozie、Azkaban、Airflow 等工具的工 作流及调度任务进行自动迁移转化,并自动创建为 Dataworks 工作流及调度作业。 5 迁移整体方案及流程 根据迁移工作的内容,我们提供了以下工作方法来保障迁移工作能够科学有序地开展 。 整个迁移工作包含以下几个阶段: Alibaba Cloud MaxCompute 解决方案 MaxCompute 解决方案 21 6 迁移详细方案 6.1 MMA 迁移服务架构 6.2 MMA Agent 技术架构及原理介绍 MMA Agent 的工作流程主要分为四个步骤: Alibaba Cloud MaxCompute 解决方案 22 6.2.1 Metadata 抓取  Meta carrier 连接用户的 Hive metastore
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    Httpfs是cloudera提供的⼀个HDFS的http接⼝,可以通过WebHDFS REST API对HDFS进⾏读写等访问。与WebHDFS的区别是,Httpfs不需要客⼾端访问集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
硅谷大数技术Hadoop生产调优手册入门银河麒麟服务务器服务器操作系统操作系统V4软件适配通过Oracle并行处理并行处理集成数据IBM概述Spark简介以及对比迁移阿里MaxCompute方案开发指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩