积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)Hadoop(9)

语言

全部中文(简体)(8)西班牙语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    Hadoop 迁移到阿里云 MaxCompute 技术方案 (V2.8.5) 编写人:MaxCompute 产品团队 日 期:2019.05 Alibaba Cloud MaxCompute 解决方案 2 目录 1 概要 .................................. Alibaba Cloud MaxCompute 解决方案 3 4.2.4 数据集成及工作流作业迁移................................................................................................ 19 5 迁移整体方案及流程 ......................... ............................................................................ 19 5.1 阶段 1:调研评估&迁移方案 ..................................................................................................
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    notes/topics/rg_cdh_6_download.html (1)2008 年成立的 Cloudera 是最早将 Hadoop 商用的公司,为合作伙伴提供 Hadoop 的 商用解决方案,主要是包括支持、咨询服务、培训。 (2)2009 年 Hadoop 的创始人 Doug Cutting 也加盟 Cloudera 公司。Cloudera 产品主 要为 CDH,Cloudera (5)share 目录:存放 Hadoop 的依赖 jar 包、文档、和官方案例 第 3 章 Hadoop 运行模式 1)Hadoop 官方网站:http://hadoop.apache.org/ 2)Hadoop 运行模式包括:本地模式、伪分布式模式以及完全分布式模式。 ➢ 本地模式:单机运行,只是用来演示一下官方案例。生产环境不用。 (1)免密登录原理 免密登录原理 公钥(A) 私钥(A) 1)ssh-key-gen 生成密钥对 公钥(A) 授权key Authorized_keys 2)拷贝 3)ssh 访问B(数 据用私钥A加密) A服务器 B服务器 4)接收到数据后,去授 权key中查找A的公钥, 并解密数据。 5)采用A公钥加 密的数据返回给A 6 接收到数 据后,用A的 私钥解密数 据 (2)生成公钥和私钥
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    Stack 的过程中,每个组件都在平台中扮演着重 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 是一个适用于这 些商业模型的解决方案。 1.1.1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基 本进程,例如对底层操作系统及其文件系统的抽象。Hadoop Common File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用 Apache Hadoop 抽取、转换和加载大数据”1 有效的大数据集成解决方案可实现简便性、高速度、可扩展 的受信任数据使用方法,更谈不上准确完整的洞察或转型 成果。 IBM软件 3 随着Hadoop市场的不断发展,顶级技术分析师一致认为, Hadoop 基础架构本身并非完整或有效的大数据集成解决方案 (请阅读此报告,其中对Hadoop为何并非数据集成平台进行了 讨论)。更加糟糕的是,一些Hadoop软件供应商利用炒作、神 话、误导或矛盾信息来渗透市场。 为彻底切断这种误导,并开发适合您的Hadoop大数据项目的
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 大数据时代的Intel • Intel的角色 • Intel Hadoop商业发行版 • 对象存储技术 Intel的角色 • 面向大数据应用,在计算、存储和网络方面提供更快更为 高效的架构级别的优化方案 • 持续投入大数据应用开发,促迚软件系统和服务的丌断优 化和创新 • 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel 图片和数据信息 基于Hadoop的新型数据中心方案 数据库成本:1PB> 6000万 RMB 数据库维护成本> 1500万RMB 原有方案 RDBMS:过车记录 文件系统:过车图片 数据库成本:1PB, 1000万RMB 数据库维护成本< 100万RMB Hadoop方案 HBase:过车记录 HDFS:过车图片
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 Hadoop 3.0以及未来

    • HDFS • YARN • MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    利用内存加快数据加载,在众多的其它的 In-Memory 类数据库或 Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 示例代码 图3 至 图 5 实现的解决方案使用以下代码。所有的代码均在 Oracle Database 11g 和 5 个节点 的 Hadoop 集群上进行过测试。与大多数白皮书一样,请将这些脚本复制到文本编辑器中并 确保格式正确。
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    计算时,会生成过多切片,需要启动过多的 MapTask。每个 MapTask 处理的数据量小,导致 MapTask 的处理时间比启动时间还小,白白消耗资源。 10.1.2 Hadoop 小文件解决方案 1)在数据采集的时候,就将小文件或小批数据合成大文件再上传 HDFS(数据源头) 2)Hadoop Archive(存储方向) 是一个高效的将小文件放入 HDFS 块中的文件存档工具,能够将多个小文件打包成一
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
Hadoop迁移阿里MaxCompute技术方案硅谷大数入门概述集成IBM时代Intel3.0以及未来Spark简介对比通过Oracle并行处理并行处理数据生产调优手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩