尚硅谷大数据技术之Hadoop(入门)(作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) MapReduce 只负 责 运算 。 Hadoop3.x在组成上没 有变化。 1.5.1 HDFS 架构概述 Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。 HDFS架构概述 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、 文件权限),以及每个文件的块列表和块所在的DataNode等。 SecondaryNa meNode 1.6 大数据技术生态体系 大数据技术生态体系 数据库(结构化数据) 文件日志(半结构化数据) 视频、ppt等(非结构化数据) Sqoop数据传递 Flume日志收集 Kafka消息队列 HDFS文件存储 HBase非关系型数据库 YARN资源管理 MapReduce离线计算 Spark Core内存计算 Hive 数据查询 Spark Mlib 数据挖掘0 码力 | 35 页 | 1.70 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量 数据 对象 供后 续使 用。如 Hive、 MapReduce、Spark 等。 Alibaba Cloud MaxCompute 解决方案 8 实时消息采集:用于实时数据采集,可扩展、高吞吐、可靠的消息服务。如 Kafka。 流处理:对实时数据进行低延迟流式计算的服务。如 Flink、Spark Streaming、Storm 等。 机器学习:满足机器学习工作负载的服务。如当前流行的 10 机器学习 Spark Mlib/ML Tensorflow PAI 机器学习平台 MaxCompute Spark 实时消息采集 Kafka Datahub 日志服务(LogHub 组件) 消息队列 Kafka 流处理 Spark Streaming Flink Storm 实时计算(原流计算) EMR(开源流计算组件)0 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 概述众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 都由一个路径来标识,路径元素由斜杠(/)分隔。 还有其他一些系统能与 Hadoop 进行集成并从其基础架构中受 益。虽然 Hadoop 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL 够做出 有利于自身的更好商业决策。 为加深理解,让我们勾勒一下大数据的概况。鉴于所涉及数据 的规模,它们会分布于大量存储和计算节点上,而这得益于使用 Hadoop。由于 Hadoop 是分布式的(而非集中式的),因而不具备关系 型数据库管理系统(RDBMS)的特点。这使得你能够使用 Hadoop 所 提供的大型数据存储和多种数据类型。 第 1 章 Hadoop 概述 30 码力 | 17 页 | 583.90 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册版本 2.7.7 1.3 Hadoop 软件简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 和输出的键必须完全不 同,而输入和输出的值则可能完全不同。 reduce: 某个键的所有键值对都会被分发到同一个 reduce 操作中。确切的说,这个键 和这个键所对应的所有值都会被传递给同一个 Reducer。reduce 过程的目的是将值的集合转换成一个值(例如求和或者求平均),或者转换成另 一个集合。这个 Reducer 最终会产生一个键值对。需要说明的是,如果 job0 码力 | 8 页 | 313.35 KB | 1 年前3
大数据时代的Intel之Hadoop面向大数据应用,在计算、存储和网络方面提供更快更为 高效的架构级别的优化方案 • 持续投入大数据应用开发,促迚软件系统和服务的丌断优 化和创新 • 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel Hadoop商业发行版 优化的大数据处理软件栈 稳定的企业级hadoop发行版 利用硬件新技术迚行优化 HBase改迚和创新,为Hadoop提供实时数据处理能力 安装、部署、配置、监控、告警和访问控制 Zookeeper 3.4.4 分布式协作服务 Pig 0.9.2 数据流处理语言 Mahout 0.6 数据挖掘 HBase 0.94.1 实时、分布式、高维数据库 Map/Reduce 1.0.3 分布式计算框架 HDFS 1.0.3 分布式文件系统 R 统计语言 Intel Hadoop Manager – 接入仸何分中心可访问全局数据 高可用性 适合本地高速写入 分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版 •全面测试的企业级发行版,保证长期稳定运行,集成最新开源的和自行开发的补丁,用户可以及时修正漏洞保证各个部件乊间的一致性,使应用顺滑运行 实时数据处理的分布式大数据应用平台 •通过对 HBase 迚行改迚和创新,英特尔0 码力 | 36 页 | 2.50 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: Parallel Computing Toolbox) ▪ MATLAB集群之上的分布式计算 (MDCS, MATLAB Distributed Computing Server) 9 MATLAB与Spark/Hadoop集成 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算)0 码力 | 17 页 | 1.64 MB | 1 年前3
Spark 简介以及与 Hadoop 的对比Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 启动计算的动因。 1.2.3 血统(Lineage) 利用内存加快数据加载,在众多的其它的 In-Memory 类数据库或 Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。0 码力 | 3 页 | 172.14 KB | 1 年前3
大数据集成与Hadoop - IBM大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 发环境:这种做法没有任何实际意义,而且支持费用非常昂 贵。您应该能够构建一次作业,然后即可在三个环境中的任意 一个环境内运行它。 最适合Hadoop的流程 Hadoop 平台由以下两个主要组件构成:分布式容错文件系统 (称为Hadoop Distributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 另外,还可以建立世界级的数据治理工作,包括数据管理、数 据沿袭和跨工具影响分析。 最佳实践3:可在需要运行海量可扩展数据集成的任何位置提 供该功能 Hadoop能以极低的成本对数据集成工作负载实施大规模 分布式处理。但是,客户需要的是海量可扩展数据集成解决方 案,从而实现Hadoop可以提供的各种潜在优势。 图5. 可扩展大数据集成必须适用于任何环境。 设计一次作业 随时随地运行和扩展该作业 Hadoop环境外部0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 3.0以及未来XOR(6个数据单元) 1 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能 多个Standby Namenode Active NN Standby NN Standby NN DN DN DN DN Journal Node 劢态资源配置 容器资源的劢态调整 资源隔离 调度的增强 YARN的Web页面的增强 • MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 读写分离 HBase存储 YARN Timeline Service v.2 • 可用性 流(flow) 聚合(aggregation) YARN Federation • YARN-29150 码力 | 33 页 | 841.56 KB | 1 年前3
Hadoop开发指南a/lib:$LD_LIBRARY_PATH 让环境⽣效 source /etc/profile或者 source ~/.bashrc 2. HDFS HDFS是⼀个⾼度容错性和⾼吞吐量的分布式⽂件系统。它被设计的易于扩展也易于使⽤,适合海量⽂件的存储。 2.1 HDFS基础操作 基础操作 查询⽂件 Usage: hadoop fs [generic options] -ls [-d]0 码力 | 12 页 | 135.94 KB | 1 年前3
共 11 条
- 1
- 2













