大数据集成与Hadoop - IBM量数据可扩展性是必不可少的。海量数据可扩展性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 现更高的处理吞吐量。添加硬件资源的同时,无需修改即可运 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响 MapReduce的性能。希望在Hadoop上实现可扩展性和 有效性的所有企业技术都需要采用YARN,并将其作为 产品路线图的一部分。 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可以处理400GB数据,以此类推,则说明应用 程序可以实现线性数据可扩展性。 • 应用程序纵向扩展:衡量软件在一个对称多处理器 (SMP) 系统中的多个处理器间实现线性数据可扩展性的 有效程度。 • 应用程序横向扩展:确定软件在非共享架构的多个 SMP 节点间实现线性数据可扩展性的有效程度。 图1. 海量数据0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案............................................................................. 11 3 MaxCompute 迁移场景分析 ................................................................................................ Assist) ................................................................................ 17 4.1.1 工具覆盖的场景: ................................................................................................. ....................................................................................... 55 8.1 【场景 1】Hive 数据和 Oozie 工作流任务如何迁移到 MaxCompute 和 Dataworks? ........... 55 Alibaba Cloud MaxCompute 解决方案0 码力 | 59 页 | 4.33 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想 CDH,Cloudera Manager,Cloudera Support (3)CDH 是 Cloudera 的 Hadoop 发行版,完全开源,比 Apache Hadoop 在兼容性,安 全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。 (4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一 个 Hadoop 数据查询 Spark Mlib 数据挖掘 Spark Streaming 实时计算 Spark Sql 数据查询 Oozie任务调度 Azkaban任务调度 业务模型、数据可视化、业务应用 Z o o k e e p e r 数 据 平 台 配 置 和 调 度 数据来源层 数据传输层 数据存储层 资源管理层 数据计算层 任务调度层 业务模型层 Storm实时计算 Flink0 码力 | 35 页 | 1.70 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)--daemon start namenode (3)向集群上传一个文件 6.2 集群安全模式&磁盘修复 1)安全模式:文件系统只接受读数据请求,而不接受删除、修改等变更请求 2)进入安全模式场景 ➢ NameNode 在加载镜像文件和编辑日志期间处于安全模式; ➢ NameNode 再接收 DataNode 注册时,处于安全模式 3)退出安全模式条件 jobclient-3.1.3-tests.jar testmapredsort -sortInput random-data -sortOutput sorted-data 10.3 企业开发场景案例 10.3.1 需求 (1)需求:从 1G 数据中,统计每个单词出现次数。服务器 3 台,每台配置 4G 内存, 4 核 CPU,4 线程。 (2)需求分析: 1G / 128mNumber of threads to handle scheduler interface. 0 码力 | 41 页 | 2.32 MB | 1 年前3
大数据时代的Intel之Hadoop明确戒隐含的担保,包括对适用亍特定用途、适销性,戒丌侵犯仸何与利、版权戒其它知识产权的担保。 “关键业务应用”是挃当英特尔® 产品发生故障时,可能会直接戒间接地造成人员伤害戒死亡的应用。如果您针对此类关键业务应用购买戒使用英特尔产品,您应当对英特尔迚行赔偿,保 证因使用此类关键业务应用而造成的产品责仸、人员伤害戒死亡索赔中直接戒间接发生的所有索赔成本、损坏、费用以及合理的律师费丌会对英特尔及其子公司、分包商和分支机构,以及 intel.com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要求计算机系统具备支持英特尔超线程(HT)技术的英特尔®0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 概述据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 操作系统。 ZooKeeper 是另一个 Hadoop Stack 组件,它能通过共享层次名 称空间的数据寄存器(称为 znode),使得分布式进程相互协调工作。 每个 znode 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在 HDFS 上的应用程序有着大型 数据集。在 HDFS 中一个典型的文件大小可以达到数百 GB 或更大, 所以 HDFS 显然支持大文件。它提供高效集成数据带宽,并且单个 群集可以扩展至数百节点。 Hadoop0 码力 | 17 页 | 583.90 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册银河麒麟服务器操作系统 V4 hadoop 软件适配手册 2 1 概述 1.1 系统概述 银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及 System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS 中的 JobTracker 拆分成了两个独立的服务:一个全局的资源管理器 ResourceManager 和每个应用程序特有的 ApplicationMaster。其中 ResourceManager 负责整个系统 的资源管理和分配,而 ApplicationMaster 负责单个应用程序的管理。 YARN 总 体 上 仍 然 是 master/slave 结 构 , 在 整 个 资 源 管0 码力 | 8 页 | 313.35 KB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 Classification Decision Tree (fitctree) – Linear Classification with Random Kernel Expansion (fitckernel) 16 应用演示 – 汽车传感器数据分析 ▪ 1300 trip log files ▪ 21 unique vehicles ▪ Approx 39 unique channels ▪ Data collected0 码力 | 17 页 | 1.64 MB | 1 年前3
Spark 简介以及与 Hadoop 的对比2. 这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点 之间的通信模型不再像 Hadoop 那样就是唯一的 Data Shuffle 一种模式。用户可以命名, 物化,控制中间结果的存储、分区等。可以说编程模型比 Hadoop 更灵活。 3. 由于 RDD 的特性,Spark 不适用那种异步细粒度更新状态的应用,例如 web 服务的存 储或者是增量的 web web 爬虫和索引。就是对于那种增量修改的应用模型不适合。 2.3 容错性 在RDD计算,通过checkpoint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是 logging the updates。用户可以控制采用哪种方式来实现容错,默认是 logging the updates 方式,通过记录跟踪所有生成 RDD 的转换(transformations)也就是记录每0 码力 | 3 页 | 172.14 KB | 1 年前3
Hadoop 3.0以及未来HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 • 支持更多的应用,包括long running的service 谢谢 Q&A0 码力 | 33 页 | 841.56 KB | 1 年前3
共 10 条
- 1













