Hadoop 迁移到阿里云MaxCompute 技术方案及开源生态由一系列的开源组件共同组成,很多用户基于 Hadoop 及开源生态组件构 建企业数据仓库/数据湖、机器学习、实时分析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 zip,工具目录结构如下: Alibaba Cloud MaxCompute 解决方案 23 其中,bin 目录下是迁移工具所需的可执行文件,libs 目录下是工具所依赖的库,res 目录下是 工具所需的其他依赖,如 odpscmd 等。 3. 获取 Hive metadata 4. 结果输出 Alibaba Cloud MaxCompute 解决方案 24 生成的目录,调 用 odpscmd 自动创建 ODPS 表与分区。 Alibaba Cloud MaxCompute 解决方案 35 【注意】:odps_ddl_runner.py 需要依赖 odpscmd,因此在执行前,需要配置 odpscmd 的 config.ini 文件,配置方法请参见文档: https://help.aliyun.com/document_detail/278040 码力 | 59 页 | 4.33 MB | 1 年前3
大数据集成与Hadoop - IBM卸载下来,以便降低成本并改善查询 服务水平协议 (SLA)。该用例会引发以下问题: • 企业是否应卸载EDW中的所有ETL工作负载? • 是否应将所有大数据集成工作负载都推送到Hadoop? • 在没有并行关系数据库管理系统 (RDBMS) 和Hadoop 的情况下,大数据集成工作负载在ETL网格中发挥怎样 的持续作用? 这些问题的正确答案取决于企业独特的大数据需求。企业可以 选择并行RDBMS、 • 释放RDBMS服务器上的容量 • 处理异构数据源(未存储到 数据库中) • ETL服务器可以较快地执行某 些流程 缺点 • ETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 pushdown之争无法在Hadoop中提供所需的性能水平。 因此他们争相与IBM合作解决这个问题,因为IBM大数据集 成解决方案以其独有的方式支持大数据集成的大规模数据可 扩展性要求。 以下是依赖ETL pushdown会造成的一些累积负面影响: • ETL包含大部分EDW工作负载。由于相关成本的影响, 对于运行ETL的工作负载而言,EDW是一种非常昂贵的 平台。 • ETL工作负载会导致查询SLA降级,最终需要您额外投0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述znode),使得分布式进程相互协调工作。 每个 znode 都由一个路径来标识,路径元素由斜杠(/)分隔。 还有其他一些系统能与 Hadoop 进行集成并从其基础架构中受 益。虽然 Hadoop 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介 有利于自身的更好商业决策。 为加深理解,让我们勾勒一下大数据的概况。鉴于所涉及数据 的规模,它们会分布于大量存储和计算节点上,而这得益于使用 Hadoop。由于 Hadoop 是分布式的(而非集中式的),因而不具备关系 型数据库管理系统(RDBMS)的特点。这使得你能够使用 Hadoop 所 提供的大型数据存储和多种数据类型。 第 1 章 Hadoop 概述 3 例如,让我们考虑类似 Google、Bing 之外,它还是很有用处。 我们可以这样简单总结 Hive:它是建立在 Hadoop 顶层之上的 数据仓库基础设施,用于提供对数据的汇总、查询以及分析。如果 你在使用 Hadoop 工作时期望数据库的体验并且怀念关系型环境中 的结构(见图 1-3),那么它或许是你的解决方案。记住,这不是与传 统的数据库或数据结构进行对比。它也不能取代现有的 RDBMS 环 Hadoop 大数据解决方案 8 境。Hive0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)——————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 1.5.4 HDFS、YARN、MapReduce 三者关系 HDFS、YARN、MapReduce三者关系 client 作业:从100T文件中找出 ss1505_wuma.avi NodeManager Container NodeManager NodeManager 大数据技术生态体系 数据库(结构化数据) 文件日志(半结构化数据) 视频、ppt等(非结构化数据) Sqoop数据传递 Flume日志收集 Kafka消息队列 HDFS文件存储 HBase非关系型数据库 YARN资源管理 MapReduce离线计算 Spark Core内存计算 Hive 数据查询 Spark Mlib 数据挖掘 Spark Streaming 实时计算 Spark 1)Sqoop:Sqoop 是一款开源的工具,主要用于在 Hadoop、Hive 与传统的数据库(MySQL) 间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进 到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。 2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统, Flume 支0 码力 | 35 页 | 1.70 MB | 1 年前3
Spark 简介以及与 Hadoop 的对比Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage) 记住了它是如何从其它 RDD 中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的 备份或者 LOG 机制,RDD 的 Lineage 记录的是粗颗粒度的特定数据转换(Transformation) Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 Narrow Dependencies 与 Wide Dependencies 用 来解决数据容错的高效性。Narrow Dependencies 是指父 RDD 的每一个分区最多被一个子 的分区或多个父 RDD 的分 区对应于一个子 RDD 的分区,也就是说一个父 RDD 的一个分区不可能对应一个子 RDD 的 多个分区。Wide Dependencies 是指子 RDD 的分区依赖于父 RDD 的多个分区或所有分区, 也就是说存在一个父 RDD 的一个分区对应一个子 RDD 的多个分区。对与 Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage0 码力 | 3 页 | 172.14 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据时代的Intel之Hadoop利用硬件新技术迚行优化 HBase改迚和创新,为Hadoop提供实时数据处理能力 针对行业的功能增强,应对丌同行业的大数据挑戓 Hive 0.9.0 交互式数据仓库 Sqoop 1.4.1 关系数据ETL工具 Flume 1.1.0 日志收集工具 Intel Hadoop Manager 2.2 安装、部署、配置、监控、告警和访问控制 Zookeeper 3.4.40 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 3.0以及未来 Classpath隔离 Shell脚本的重构 • HDFS • YARN • MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性0 码力 | 33 页 | 841.56 KB | 1 年前3
共 8 条
- 1













