MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖1 © 2015 The MathWorks, Inc. MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ Variety - 数据种类 ,数据种类繁多 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作0 码力 | 17 页 | 1.64 MB | 1 年前3
大数据集成与Hadoop - IBM的大数据集成方法和架构,同时避免各种实施缺陷。 海量数据可扩展性:总体要求 如果您的大数据集成解决方案无法支持海量数据可扩展性, 那么很可能无法达到预期的效果。为发挥大数据措施的整体 业务价值,对于大部分Hadoop项目的大数据集成而言,海 量数据可扩展性是必不可少的。海量数据可扩展性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 海量数据可扩展性的4大特征。 大部分商业数据集成软件平台在设计时从未考虑过支持海量数 据可扩展性,这意味着在设计之初,并未考虑利用非共享大规模 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商不支持将大数据集分散在多个节点间,无法对 独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 项目 软件数据流通过简化在一 个或多个节点实施和执行 数据管道和数据分区的过 程,从而充分利用非共享 架构。软件数据流还可以 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述平 台交付的统一服务,Cloudera 开启了处理和分析多种不同数据类型 的大门(见图 1-5)。 处理、分析和服务 安全 文件系统 (HDFS) 关系型 非结构化 批处理 流 搜索 统一服务 资源管理(YARN) 存储 结构化 集成 图 1-5 1.4.2 数据集成与 Hadoop 数据集成是 Hadoop 解决方案架构的关键步骤。许多供应商利 Hortonworks,优化了 Hadoop 上的整条大数据供应链,将数据转 换为具有可操作性的信息来驱动商业价值。 例如,现代的数据架构正在越来越多地用于建造大型数据湖。 通过将数据管理服务集成为更大的数据湖,企业可以利用各种各样 的渠道来存储和处理大量数据,这些渠道包括社交媒体、点击流数 据、服务器日志、客户交易与交互、视频以及来自现场设备的传感 器数据。 Hortonworks 或者0 码力 | 17 页 | 583.90 KB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 务进程提交外部作业。 3 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 图 2. 利用表函数进行并行处理 由于表函数可以并行运行,Hadoop 流作业也可以不同程度地并行运行,并且后者不受 Oracle 查询协调器的控制,这种情况下,队列能提供负载平衡。 4 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据0 码力 | 21 页 | 1.03 MB | 1 年前3
大数据时代的Intel之Hadoop存储、聚合、管理这些大数据以及对数据的深度分析的新技术和新能力,正在快速增长,就像预 测计算芯片增长速度的摩尔定律一样。 — McKinsey Global Institute 统计和报表 价值 数据挖掘和预测性分析 大数据时代的Intel • Intel的角色 • Intel Hadoop商业发行版 • 对象存储技术 Intel的角色 • 面向大数据应用,在计算、存储和网络方面提供更快更为 日志收集工具 Intel Hadoop Manager 2.2 安装、部署、配置、监控、告警和访问控制 Zookeeper 3.4.4 分布式协作服务 Pig 0.9.2 数据流处理语言 Mahout 0.6 数据挖掘 HBase 0.94.1 实时、分布式、高维数据库 Map/Reduce 1.0.3 分布式计算框架 HDFS 1.0.3 分布式文件系统0 码力 | 36 页 | 2.50 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案........................................ 19 Alibaba Cloud MaxCompute 解决方案 3 4.2.4 数据集成及工作流作业迁移................................................................................................ ................................................................. 55 8.1 【场景 1】Hive 数据和 Oozie 工作流任务如何迁移到 MaxCompute 和 Dataworks? ........... 55 Alibaba Cloud MaxCompute 解决方案 5 8.1.1 网络环境检查 ......................................................................... 57 8.1.6 批量迁移 Oozie 工作流和节点任务 ................................................................................... 570 码力 | 59 页 | 4.33 MB | 1 年前3
Hadoop 3.0以及未来Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK 8+ 升级 Classpath隔离 Shell脚本的重构 • HDFS • YARN • MapReduce Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN YARN Timeline Service v.2 YARN Federation 劢态资源配置 MapReduce YARN Timeline Service v.2 • 扩展性 分布式读写 读写分离 HBase存储 YARN Timeline Service v.2 • 可用性 流(flow) 聚合(aggregation) YARN Federation • YARN-2915 允许YARN的集群扩展到一万个戒更多个节点 YARN的集群的集群对用户来说是一个整体的集群0 码力 | 33 页 | 841.56 KB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce0 码力 | 8 页 | 313.35 KB | 1 年前3
共 8 条
- 1













