 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop0 码力 | 17 页 | 1.64 MB | 1 年前3 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 MDCS 10 Hadoop Hadoop是跨计算机集群的分布式大数据处理平台,由两部分组成: • YARN (Yet Another Resource Negotiator) – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop0 码力 | 17 页 | 1.64 MB | 1 年前3
 大数据集成与Hadoop - IBM分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用 Apache Hadoop 抽取、转换和加载大数据”1 有效的大数据集成解决方案可实现简便性、高速度、可扩展 性、功能和治理,从Hadoop沼泽中生成可使用的数据。没有 有效的集成,势必形成“垃圾进垃圾出”的情况-这不是出色 的受信任数据使用方法,更谈不上准确完整的洞察或转型 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响0 码力 | 16 页 | 1.23 MB | 1 年前3 大数据集成与Hadoop - IBM分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用 Apache Hadoop 抽取、转换和加载大数据”1 有效的大数据集成解决方案可实现简便性、高速度、可扩展 性、功能和治理,从Hadoop沼泽中生成可使用的数据。没有 有效的集成,势必形成“垃圾进垃圾出”的情况-这不是出色 的受信任数据使用方法,更谈不上准确完整的洞察或转型 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成 引擎作为本机 Hadoop应用程序来实现,而且不会影响0 码力 | 16 页 | 1.23 MB | 1 年前3
 通过Oracle 并行处理集成 Hadoop 数据Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 下面我们将以一个实际示例展示图 2 的架构。请注意,我们的示例仅展示了使用表函数访问 Hadoop 中存储的数据的一个模板实现。显然可能存在其他的甚至可能更好的实现。 下图是图 2 中原始示意图在技术上更准确、更具体的展示,解释了我们要在何处、如何使用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。0 码力 | 21 页 | 1.03 MB | 1 年前3 通过Oracle 并行处理集成 Hadoop 数据Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 Database 11g 实现本文所述的数据库内的 mapreduce。通常情况 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 下面我们将以一个实际示例展示图 2 的架构。请注意,我们的示例仅展示了使用表函数访问 Hadoop 中存储的数据的一个模板实现。显然可能存在其他的甚至可能更好的实现。 下图是图 2 中原始示意图在技术上更准确、更具体的展示,解释了我们要在何处、如何使用 后文给出的部分实际代码: 图 3. 启动 Mapper 作业并检索数据 第 1 步是确定由谁作为查询协调器。0 码力 | 21 页 | 1.03 MB | 1 年前3
 Hadoop 概述Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 织可以更高效地确定管理大数据的需求。后续步骤包括做出关于如 何将 Hadoop 落实到现有环境的决定。 正在实现或考虑 Hadoop 的组织有可能将其引入到现有环境中。 为获取最大的利益,了解如何能让 Hadoop 和现有环境一起工作以0 码力 | 17 页 | 583.90 KB | 1 年前3 Hadoop 概述Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN 加入到软件栈中,它是面向大数据应用程序的分布式 Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 Hadoop。 与任何软件栈一样,Apache 对于配置 Hadoop Common 有一定 要求。大体了解 Linux 或 Unix 管理员所需的技能将有助于你完成配 置。Hadoop Common 也称为 Hadoop Stack,并不是为初学者设计的, 因此实现的速度取决于你的经验。事实上,Apache 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 织可以更高效地确定管理大数据的需求。后续步骤包括做出关于如 何将 Hadoop 落实到现有环境的决定。 正在实现或考虑 Hadoop 的组织有可能将其引入到现有环境中。 为获取最大的利益,了解如何能让 Hadoop 和现有环境一起工作以0 码力 | 17 页 | 583.90 KB | 1 年前3
 尚硅谷大数据技术之Hadoop(入门)3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 人工智能资料下载,可百度访问:尚硅谷官网 Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch 合资组建。 (2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述 工程师均在 2005 年开始协助雅虎开发 Hadoop,贡献了 Hadoop80%的代码。 (3)Hortonworks 的主打产品是 Hortonworks Data Platform(HDP),也同样是 100%开 源的产品,HDP 除常见的项目外还包括了 Ambari,一款开源的安装和管理系统。0 码力 | 35 页 | 1.70 MB | 1 年前3 尚硅谷大数据技术之Hadoop(入门)3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 人工智能资料下载,可百度访问:尚硅谷官网 Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch 合资组建。 (2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述 工程师均在 2005 年开始协助雅虎开发 Hadoop,贡献了 Hadoop80%的代码。 (3)Hortonworks 的主打产品是 Hortonworks Data Platform(HDP),也同样是 100%开 源的产品,HDP 除常见的项目外还包括了 Ambari,一款开源的安装和管理系统。0 码力 | 35 页 | 1.70 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)namenode.handler.count=20 × ??????????? ????,比如集群规模(DataNode 台 数)为 3 台时,此参数设置为 21。可通过简单的 python 代码计算该值,代码如下。 [atguigu@hadoop102 ~]$ sudo yum install -y python [atguigu@hadoop102 ~]$ python Python 2 [atguigu@hadoop105 hadoop-3.1.3]$ yarn --daemon stop nodemanager stopping nodemanager 6)如果数据不均衡,可以用命令实现集群的再平衡 [atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-balancer.sh - threshold 10 第 5 章 HDFS—存储优化 hadoop fs -cp har:///output/input.har/* / 第 7 章 HDFS—集群迁移 7.1 Apache 和 Apache 集群间数据拷贝 1)scp 实现两个远程主机之间的文件复制 scp -r hello.txt root@hadoop103:/user/atguigu/hello.txt // 推 push scp -r roo0 码力 | 41 页 | 2.32 MB | 1 年前3 尚硅谷大数据技术之Hadoop(生产调优手册)namenode.handler.count=20 × ??????????? ????,比如集群规模(DataNode 台 数)为 3 台时,此参数设置为 21。可通过简单的 python 代码计算该值,代码如下。 [atguigu@hadoop102 ~]$ sudo yum install -y python [atguigu@hadoop102 ~]$ python Python 2 [atguigu@hadoop105 hadoop-3.1.3]$ yarn --daemon stop nodemanager stopping nodemanager 6)如果数据不均衡,可以用命令实现集群的再平衡 [atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-balancer.sh - threshold 10 第 5 章 HDFS—存储优化 hadoop fs -cp har:///output/input.har/* / 第 7 章 HDFS—集群迁移 7.1 Apache 和 Apache 集群间数据拷贝 1)scp 实现两个远程主机之间的文件复制 scp -r hello.txt root@hadoop103:/user/atguigu/hello.txt // 推 push scp -r roo0 码力 | 41 页 | 2.32 MB | 1 年前3
 Hadoop 迁移到阿里云MaxCompute 技术方案以便分析工具或分析应用能够获取数据。如利用 MPP 数据仓库、Spark SQL 等支持 BI 工具 访问,利用 Hbase 实现低延迟的在线服务等  分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。  数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map,struct) * 支持 Java、Python 语言的 UDF/UDAF/UDTF * 语法:Values、CTE、SEMIJOIN、FROM 提交方式(暂不 支持 spark-shell/spark-sql 的交互式),提供原生的 Spark WebUI 供用户查看; * 通过访问 OSS、OTS、database 等外部数据源,实现 更复杂的 ETL 处理,支持对 OSS 非结构化进行处理; * 使用 Spark 面向 MaxCompute 内外部数据开展机器 学习,扩展应用场景; 机器学习 PAI MaxCompute0 码力 | 59 页 | 4.33 MB | 1 年前3 Hadoop 迁移到阿里云MaxCompute 技术方案以便分析工具或分析应用能够获取数据。如利用 MPP 数据仓库、Spark SQL 等支持 BI 工具 访问,利用 Hbase 实现低延迟的在线服务等  分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。  数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 * 支持复杂数据类型(array,map,struct) * 支持 Java、Python 语言的 UDF/UDAF/UDTF * 语法:Values、CTE、SEMIJOIN、FROM 提交方式(暂不 支持 spark-shell/spark-sql 的交互式),提供原生的 Spark WebUI 供用户查看; * 通过访问 OSS、OTS、database 等外部数据源,实现 更复杂的 ETL 处理,支持对 OSS 非结构化进行处理; * 使用 Spark 面向 MaxCompute 内外部数据开展机器 学习,扩展应用场景; 机器学习 PAI MaxCompute0 码力 | 59 页 | 4.33 MB | 1 年前3
 Spark 简介以及与 Hadoop 的对比1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 计算,通过 checkpint 进行容错,做 checkpoint 有两种方式,一个是 checkpoint data,一个是 logging the updates。用户可以控制采用哪种方式来实现容错,默认是 logging the updates 方式,通过记录跟踪所有生成 RDD 的转换(transformations)也就是记录每 个 RDD 的 lineage(血统)来重新计算生成丢失的分区数据。0 码力 | 3 页 | 172.14 KB | 1 年前3 Spark 简介以及与 Hadoop 的对比1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 计算,通过 checkpint 进行容错,做 checkpoint 有两种方式,一个是 checkpoint data,一个是 logging the updates。用户可以控制采用哪种方式来实现容错,默认是 logging the updates 方式,通过记录跟踪所有生成 RDD 的转换(transformations)也就是记录每 个 RDD 的 lineage(血统)来重新计算生成丢失的分区数据。0 码力 | 3 页 | 172.14 KB | 1 年前3
 大数据时代的Intel之Hadoop可通过Hive来访问HBase,迚行SQL查询 • 使用MapReduce来实现 • 比Hive访问HDFS慢3~5倍 IDH引入了Interactive Hive over HBase • 完全的Hive支持:常用功能(select, group-by等)用HBase coprocessor 实现,其余功能用MapReduce实现,无缝连接 • 去除了MapReduce的overhead,大大减少了数据传输 即时处理提供有效保障 针对企业用户开发的新的平台功能 •提供企业关键应用程序所需的即时大数据分析,以及其他针对企业用户需要的增强功能,例如:提供跨数据中心的 HBase 数据库虚拟大表功能,实现 HBase 数据库复制和备仹功能, 等等。 提供底层 Hadoop 性能优化算法和稳定性增强 •基亍 Hadoop 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更0 码力 | 36 页 | 2.50 MB | 1 年前3 大数据时代的Intel之Hadoop可通过Hive来访问HBase,迚行SQL查询 • 使用MapReduce来实现 • 比Hive访问HDFS慢3~5倍 IDH引入了Interactive Hive over HBase • 完全的Hive支持:常用功能(select, group-by等)用HBase coprocessor 实现,其余功能用MapReduce实现,无缝连接 • 去除了MapReduce的overhead,大大减少了数据传输 即时处理提供有效保障 针对企业用户开发的新的平台功能 •提供企业关键应用程序所需的即时大数据分析,以及其他针对企业用户需要的增强功能,例如:提供跨数据中心的 HBase 数据库虚拟大表功能,实现 HBase 数据库复制和备仹功能, 等等。 提供底层 Hadoop 性能优化算法和稳定性增强 •基亍 Hadoop 底层的大量优化算法,配合英特尔优化架构,使应用效率更高、计算存储分布更0 码力 | 36 页 | 2.50 MB | 1 年前3
 Hadoop 3.0以及未来HDFS • YARN • MapReduce  Task层次的Native优化 MapReduce Task层次Native优化 • 对map output collector的Native实现,对于shuffle密集型的task能 带来30%的性能提升。 Hadoop 的未来 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等0 码力 | 33 页 | 841.56 KB | 1 年前3 Hadoop 3.0以及未来HDFS • YARN • MapReduce  Task层次的Native优化 MapReduce Task层次Native优化 • 对map output collector的Native实现,对于shuffle密集型的task能 带来30%的性能提升。 Hadoop 的未来 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等0 码力 | 33 页 | 841.56 KB | 1 年前3
共 11 条
- 1
- 2













