 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 1 利⽤安装脚本部署 利⽤安装脚本部署 在任⼀master节点下的都有 /root/install\_uhadoop\_client.sh,⽤⼾可以利⽤此脚本进⾏客⼾端的安装部署 也可以通过外⽹下载最新版本安装脚本 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 1/12 wget http://new-uhadoop.cn-bj.ufileos.c 客⼾机上需要安装客⼾端的⽤⼾名 password: 客⼾机root密码 port:客⼾机ssh连接端⼝ 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost:0 码力 | 12 页 | 135.94 KB | 1 年前3 Hadoop开发指南注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 1 利⽤安装脚本部署 利⽤安装脚本部署 在任⼀master节点下的都有 /root/install\_uhadoop\_client.sh,⽤⼾可以利⽤此脚本进⾏客⼾端的安装部署 也可以通过外⽹下载最新版本安装脚本 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 1/12 wget http://new-uhadoop.cn-bj.ufileos.c 客⼾机上需要安装客⼾端的⽤⼾名 password: 客⼾机root密码 port:客⼾机ssh连接端⼝ 安装完成后,请重新登录客⼾机或执⾏source ~/.bashrc 1.2.2 ⾃⾏安装 ⾃⾏安装 安装jdk,从集群master1节点上拷⻉安装包到UHost: scp -r root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost:0 码力 | 12 页 | 135.94 KB | 1 年前3
 Hadoop 迁移到阿里云MaxCompute 技术方案....................................................................... 56 8.1.3 安装 MMA Agent 客户端工具 .......................................................................................... 56 8 编程接口(提供优化增强的 MaxCompute MapReduce,也提供高度兼容 Hadoop 的 MapReduce 版本) 不暴露文件系统,输入输出都是表 通过 MaxCompute 客户端工具、Dataworks 提交作业 交互式分析 MaxCompute Lightning MaxCompute 产品的交互式查询服务,特性如下: 兼容 PostgreSQL:兼容 PostgreSQL PostgreSQL 协议的 JDBC/ODBC 接口,所有支持 PostgreSQL 数据库的工 具或应用使用默认驱动都可以轻松地连接到 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服0 码力 | 59 页 | 4.33 MB | 1 年前3 Hadoop 迁移到阿里云MaxCompute 技术方案....................................................................... 56 8.1.3 安装 MMA Agent 客户端工具 .......................................................................................... 56 8 编程接口(提供优化增强的 MaxCompute MapReduce,也提供高度兼容 Hadoop 的 MapReduce 版本) 不暴露文件系统,输入输出都是表 通过 MaxCompute 客户端工具、Dataworks 提交作业 交互式分析 MaxCompute Lightning MaxCompute 产品的交互式查询服务,特性如下: 兼容 PostgreSQL:兼容 PostgreSQL PostgreSQL 协议的 JDBC/ODBC 接口,所有支持 PostgreSQL 数据库的工 具或应用使用默认驱动都可以轻松地连接到 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服0 码力 | 59 页 | 4.33 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(入门)App Mstr Container Container Container MapTask ReduceTask Container ReduceTask MapTask 说明1:客户端可以有多个 说明2:集群上可以运行多个ApplicationMaster 说明3:每个NodeManager上可以有多个Container 4G内存 2CPU 4G内存 2CPU 4G内存 2CPU 尚硅谷大数据技术之Hadoop(入门)App Mstr Container Container Container MapTask ReduceTask Container ReduceTask MapTask 说明1:客户端可以有多个 说明2:集群上可以运行多个ApplicationMaster 说明3:每个NodeManager上可以有多个Container 4G内存 2CPU 4G内存 2CPU 4G内存 2CPU- dfs.namenode.http-address - hadoop102:9870 - [atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh (4)Web 端查看 HDFS 的 NameNode (a)浏览器中输入:http://hadoop102:9870 (b)查看 HDFS 上存储的数据信息 (5)Web 端查看 YARN 的 ResourceManager (a)浏览器中输入:http://hadoop103:8088 0 码力 | 35 页 | 1.70 MB | 1 年前3
 尚硅谷大数据技术之Hadoop(生产调优手册)threads listen to requests from all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。 尚硅谷大数据技术之Hadoop(生产调优手册)threads listen to requests from all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。- dfs.namenode.handler.count - 21 + 12.5 + 12.5 ≈ 30m/s 所有网络资源都已经用满。 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 读性能 1)测试内容:读取 HDFS 集群 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ 那么出现存储策略为 LAZY_PERSIST 时,文件块副本都存储在 DISK 上的原因有如下两 点: (1)当客户端所在的 DataNode 节点没有 RAM_DISK 时,则会写入客户端所在的 DataNode 节点的 DISK 磁盘,其余副本会写入其他节点的 DISK 磁盘。 (2)当客户端所在的 DataNode 有 RAM_DISK,但“dfs.datanode.max.locked.memory”0 码力 | 41 页 | 2.32 MB | 1 年前3
 Hadoop 概述所示,MapReduce 的工作流程就像一个有着大量齿轮 的古老时钟。在移动到下一个之前,每一个齿轮执行一项特定任务。 它展现了数据被切分为更小尺寸以供处理的过渡状态。 主节点 客户端 HDFS 分布式数据存储 YARN 分布式数据处理 从属 NAMENODE 活动 NAMENODE 备用 NAMENODE 调度器 共享编辑日志 或者 JOURNAL 的集中管理解决方案用于维护分布式系统的 配置。由于 ZooKeeper 用于维护信息,因此任何新节点一旦加入系 统,将从 ZooKeeper 中获取最新的集中式配置。这也使得你只需要 通过 ZooKeeper 的一个客户端改变集中式配置,便能改变分布式系 统的状态。 名称服务是将某个名称映射为与该名称相关信息的服务。它类 似于活动目录,作为一项名称服务,活动目录的作用是将某人的用 户 ID(用户名)映射为环境中的特定访问或权限。同样,DNS 提供了一种为数据赋予结构的渠道,并且通过一种名为 HiveQL 的类 SQL 语言进行数据查询。 Hive Thrift 服务器 驱动程序 解析器 执行 Hive Web 接口 计划器 优化器 MS 客户端 元存储 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 织可以更0 码力 | 17 页 | 583.90 KB | 1 年前3 Hadoop 概述所示,MapReduce 的工作流程就像一个有着大量齿轮 的古老时钟。在移动到下一个之前,每一个齿轮执行一项特定任务。 它展现了数据被切分为更小尺寸以供处理的过渡状态。 主节点 客户端 HDFS 分布式数据存储 YARN 分布式数据处理 从属 NAMENODE 活动 NAMENODE 备用 NAMENODE 调度器 共享编辑日志 或者 JOURNAL 的集中管理解决方案用于维护分布式系统的 配置。由于 ZooKeeper 用于维护信息,因此任何新节点一旦加入系 统,将从 ZooKeeper 中获取最新的集中式配置。这也使得你只需要 通过 ZooKeeper 的一个客户端改变集中式配置,便能改变分布式系 统的状态。 名称服务是将某个名称映射为与该名称相关信息的服务。它类 似于活动目录,作为一项名称服务,活动目录的作用是将某人的用 户 ID(用户名)映射为环境中的特定访问或权限。同样,DNS 提供了一种为数据赋予结构的渠道,并且通过一种名为 HiveQL 的类 SQL 语言进行数据查询。 Hive Thrift 服务器 驱动程序 解析器 执行 Hive Web 接口 计划器 优化器 MS 客户端 元存储 图 1-3 1.4 与其他系统集成 如果在科技领域工作,你一定清楚地知道集成是任何成功实现 中必不可少的部分。一般来说,通过一些发现流程或计划会议,组 织可以更0 码力 | 17 页 | 583.90 KB | 1 年前3
 這些年,我們一起追的HadoopApplication Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, 以及找不到老師教的技術,想辦法變 成自己的專長。 目前負責 Java 與 .NET 雲端運算相 關技術的推廣,主要包括 Hadoop Platform 與 NoSQL 等 Big Data 相關 應用,Google App Engine、Microsoft Azure 與 CloudBees 球賽的期間合作,透過 Dataflow 讀取數百萬則 Twitter 貼文,做球迷情感分析 號稱下一代的 Dataflow 目前也是寫 Java iThome Google I/O 2014 快報:雲端大資料分析服務 Dataflow 現身 62 / 74 Data 重要議題: SQL on Hadoop NoSQL and Hadoop 資料不落地 資料不出防火牆 ... 所以: 從 Hue SQuirrel Phoenix - We put the SQL back in NoSQL Salesforce 主導 其實就是在 HBase 上頭提供一個 JDBC Wrapper,把 Client 端提 供的 SQL Query,翻譯成一連串的 HBase Scan,再把結果包裝成 JDBC ResultSet 傳回 號稱小的 Query 只要幾個 ms,幾個 Million 的資料筆數也只要幾秒0 码力 | 74 页 | 45.76 MB | 1 年前3 這些年,我們一起追的HadoopApplication Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, 以及找不到老師教的技術,想辦法變 成自己的專長。 目前負責 Java 與 .NET 雲端運算相 關技術的推廣,主要包括 Hadoop Platform 與 NoSQL 等 Big Data 相關 應用,Google App Engine、Microsoft Azure 與 CloudBees 球賽的期間合作,透過 Dataflow 讀取數百萬則 Twitter 貼文,做球迷情感分析 號稱下一代的 Dataflow 目前也是寫 Java iThome Google I/O 2014 快報:雲端大資料分析服務 Dataflow 現身 62 / 74 Data 重要議題: SQL on Hadoop NoSQL and Hadoop 資料不落地 資料不出防火牆 ... 所以: 從 Hue SQuirrel Phoenix - We put the SQL back in NoSQL Salesforce 主導 其實就是在 HBase 上頭提供一個 JDBC Wrapper,把 Client 端提 供的 SQL Query,翻譯成一連串的 HBase Scan,再把結果包裝成 JDBC ResultSet 傳回 號稱小的 Query 只要幾個 ms,幾個 Million 的資料筆數也只要幾秒0 码力 | 74 页 | 45.76 MB | 1 年前3
 大数据集成与Hadoop - IBM可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 运行数据集成工作负载的场景可能包括: • 并行RDBMS • 不含RDBMS或Hadoop的网格 • Hadoop(包含或不含MapReduce pushdown)中 • Hadoop环境内外之间,在一端抽取数据卷,动态处理 和转换记录,然后在另一端加载记录 为了实现成功和可持续发展并保持较低的成本,一项有效的 大数据集成解决方案必须灵活支持上述各种场景。根据 IBM 与大数据客户的合作经验,InfoSphere Information0 码力 | 16 页 | 1.23 MB | 1 年前3 大数据集成与Hadoop - IBM可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 运行数据集成工作负载的场景可能包括: • 并行RDBMS • 不含RDBMS或Hadoop的网格 • Hadoop(包含或不含MapReduce pushdown)中 • Hadoop环境内外之间,在一端抽取数据卷,动态处理 和转换记录,然后在另一端加载记录 为了实现成功和可持续发展并保持较低的成本,一项有效的 大数据集成解决方案必须灵活支持上述各种场景。根据 IBM 与大数据客户的合作经验,InfoSphere Information0 码力 | 16 页 | 1.23 MB | 1 年前3
 Hadoop 3.0以及未来• MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能0 码力 | 33 页 | 841.56 KB | 1 年前3 Hadoop 3.0以及未来• MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency Hell),版本冲突 解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能0 码力 | 33 页 | 841.56 KB | 1 年前3
 银河麒麟服务器操作系统V4 Hadoop 软件适配手册master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服务,它负责管理文件系统的命名空间和客户端对文 件的访问。NameNode 会保存文件系统的具体信息,包括文件信息、文件被分割 成具体 block 块的信息、以及每一个 block 块归属的 DataNode 的信息。对于整个 集群来说,HDFS0 码力 | 8 页 | 313.35 KB | 1 年前3 银河麒麟服务器操作系统V4 Hadoop 软件适配手册master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。 NameNode 作为 master 服务,它负责管理文件系统的命名空间和客户端对文 件的访问。NameNode 会保存文件系统的具体信息,包括文件信息、文件被分割 成具体 block 块的信息、以及每一个 block 块归属的 DataNode 的信息。对于整个 集群来说,HDFS0 码力 | 8 页 | 313.35 KB | 1 年前3
 大数据时代的Intel之Hadoop(0.90.3) Advanced Region Balancing 25000 82000 查询数/秒 揑入记录数/秒 HBase写入性能讨论 写入时的性能瓶颈: • 客户端 • 使用Write buffer减少RPC • 避免频繁创建HTable对象 • 如果可以,关闭WAL • Region负载丌均衡:要让写均匀分布到所有的region server上0 码力 | 36 页 | 2.50 MB | 1 年前3 大数据时代的Intel之Hadoop(0.90.3) Advanced Region Balancing 25000 82000 查询数/秒 揑入记录数/秒 HBase写入性能讨论 写入时的性能瓶颈: • 客户端 • 使用Write buffer减少RPC • 避免频繁创建HTable对象 • 如果可以,关闭WAL • Region负载丌均衡:要让写均匀分布到所有的region server上0 码力 | 36 页 | 2.50 MB | 1 年前3
共 10 条
- 1













