Hadoop 概述SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介绍这些组件中的一部分,并且展示它们如何与 Hadoop 进行交互。 1.1 商业分析与大数据 商业分析通过统计和业务分析对数据进行研究。Hadoop 允许你 在其数据存储中进行业务分析。这些结果使得组织和公司能够做出 有利于自身的更好商业决策。 为加深理解,让 件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 1.4 YARN 是什么 YARN 基础设施(另一个资源协调器)是一项用于提供执行应用 程序所需的计算资源(内存、CPU 等)的框架。 YARN 有什么诱人的特点或是性质?其中两个重要的部分是资 源管理器和节点管理器。让我们来勾勒 YARN 的框架。首先考虑一 个两层的群集,其中资源管理器在顶层(每个群集中只有一个)。资 Hadoop 大数据解决方案 6 源管理器是主0 码力 | 17 页 | 583.90 KB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks 文档较好,对应产品 HDP。2011 Hortonworks 现在已经被 Cloudera 公司收购,推出新的品牌 CDP。 (计算+资源调度) HDFS(数据存储) Common(辅助工具) Hadoop1.x组成 Hadoop2.x组成 在 Hadoop1.x 时 代 , Hadoop中的MapReduce同 时处理业务逻辑运算和资 源的调度,耦合性较大。 在Hadoop2.x时代,增 加了Yarn。Yarn只负责 资 源 的 调 度 , MapReduce 只负 责 运算 。 Hadoop3.x在组成上没0 码力 | 35 页 | 1.70 MB | 1 年前3
大数据集成与Hadoop - IBM并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 佳 的大数据集成方法和架构,同时避免各种实施缺陷。 海量数据可扩展性:总体要求 如果您的大数据集成解决方案无法支持海量数据可扩展性, 那么很可能无法达到预期的效果。为发挥大数据措施的整体 业务价值,对于大部分Hadoop项目的大数据集成而言,海 量数据可扩展性是必不可少的。海量数据可扩展性意味着对 处理的数据量、处理吞吐量以及使用的处理器和处理节点数 量全无限制。只需添加更多的硬件,即可处理更多的数据,实 一个环境内运行它。 最适合Hadoop的流程 Hadoop 平台由以下两个主要组件构成:分布式容错文件系统 (称为Hadoop Distributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案................................................................... 15 3.1 迁移基于 Hadoop 的数据湖/数据仓库业务负载 ......................................................................... 15 3.2 不同的网络环境及部署形态迁移 .............................................................................. 20 5.2 阶段 2:试点/全面业务迁移 ................................................................................................ MaxCompute 解决方案 6 1 概要 Hadoop 在企业构建第一代大数据平台中成为主流的技术框架,但是随着企业信息化的高 速发展,在数字化、智能化的转型过程中,Hadoop 越来越复杂的技术架构和运维成本、平台 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来越多的企业客户选择数据上云,在云上构建数据仓库。以云数0 码力 | 59 页 | 4.33 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 着超大数据集(large data set)的应用程序。HDFS 放宽了(relax)POSIX 的要求, 可以以流的形式访问(streaming access)文件系统中的数据。 Hadoop 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 个的、可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。 map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下,0 码力 | 8 页 | 313.35 KB | 1 年前3
大数据时代的Intel之Hadoop仸何明确戒隐含的担保,包括对适用亍特定用途、适销性,戒丌侵犯仸何与利、版权戒其它知识产权的担保。 “关键业务应用”是挃当英特尔® 产品发生故障时,可能会直接戒间接地造成人员伤害戒死亡的应用。如果您针对此类关键业务应用购买戒使用英特尔产品,您应当对英特尔迚行赔偿,保 证因使用此类关键业务应用而造成的产品责仸、人员伤害戒死亡索赔中直接戒间接发生的所有索赔成本、损坏、费用以及合理的律师费丌会对英特尔及其子公司、分包商和分支机构,以及 分布式协作服务 Pig 0.9.2 数据流处理语言 Mahout 0.6 数据挖掘 HBase 0.94.1 实时、分布式、高维数据库 Map/Reduce 1.0.3 分布式计算框架 HDFS 1.0.3 分布式文件系统 R 统计语言 Intel Hadoop Manager – 安装、配置、管理、监控、告警 英特尔Hadoop性能优化 测试配置 文件系统:过车图片 数据库成本:1PB, 1000万RMB 数据库维护成本< 100万RMB Hadoop方案 HBase:过车记录 HDFS:过车图片 架构灵活,适应业务要求,成本大幅降低 0 5000 10000 15000 20000 25000 30000 过车查询(s) 套牌分析(s) 碰撞分析(s) 原有方案 30 3600 288000 码力 | 36 页 | 2.50 MB | 1 年前3
通过Oracle 并行处理集成 Hadoop 数据许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 下,Oracle Database 11g 中的并行执行框架足以满足针对外部表大多数的并行操作。 在有些情况下(例如,如果 FUSE 不可用),外部表方法可能不适用。Oracle 表函数提供了 从 Hadoop 中获取数据的替代方法。本文附带的示例展示了一种这样的方法。更深入地来 讲,我们用一个表函数来实现,这个表函数使用 DBMS_SCHEDULER 框架异步调用外部shell 脚本,然后由这个shell脚本提交一个Hadoop0 码力 | 21 页 | 1.03 MB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 4.2 服役新服务器 1)需求 随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据 的需求,需要在原有集群基础上动态添加新的数据节点。 2)环境准备 (1)在 hadoop100 主机上再克隆一台 hadoop105 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.setCombinerClass(xxxReducer.class); 5)为了减少磁盘IO,可以采用Snappy或者LZO压缩 conf.s0 码力 | 41 页 | 2.32 MB | 1 年前3
Hadoop 3.0以及未来计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK 8+ 升级 Classpath隔离 Shell脚本的重构 • HDFS • YARN • MapReduce Classpath隔离 • HADOOP-11656, HDFS-6200 问题:依赖性地狱(Dependency0 码力 | 33 页 | 841.56 KB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Core (Batch Processing) 12 MATLAB与Hadoop datastore0 码力 | 17 页 | 1.64 MB | 1 年前3
共 10 条
- 1













