积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(4)Prometheus(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 4 个.
  • 全部
  • 系统运维
  • Prometheus
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 1.6 利用夜莺扩展能力打造全方位监控系统

    夜莺设计实现:Agentd 数据采集 04 夜莺设计实现:Server 数据处理 05 夜莺设计实现:技术难点及细节 06 运维监控需求来源 第一部分 如果贵司的业务强依赖IT技术,IT故障会直接影响营业收入, 稳定性体系一定要重视起来,而监控,就是稳定性体系中至 关重要的一环 运维监控需求来源 01.监控的原始需求来自业务稳定性 左图是2013年的一个新闻,讲 Google宕机的影响。2020年也出现 果服务器宕机1分钟,银行会损失 27万美元,制造业会损失42万美 元 美团故障?滴滴故障?腾讯故障? 运维监控需求来源 01.监控的原始需求来自业务稳定性 如何减少服务停摆导致的经济损失?尽快发现故障并止损!故障处理过程中,监控是『发现』和『定位』两个环节 的关键工具。故障处理过程的首要原则是『止损』,因此,过程中的『发现』和『定位』都是面向尽快『止损』来 实现。 监控痛点:全面完备、跨云 第二部分
    0 码力 | 40 页 | 3.85 MB | 1 年前
    3
  • pdf文档 B站统⼀监控系统的设计,演进 与实践分享

    异常响应 todo • 异常事件关联关系挖掘 • 全联路路模块调⽤用分析 • 瓶颈分析 针对历史事件 针对当前事件 • 异常检查(动态阈值) • 异常定位(根因分析) • 快速⽌止损 针对未来事件 • 故障预测 • 容量量预测 • 趋势预测 Thank You! 哔哩哔哩 - ( ゜- ゜)つロ 乾杯~ - bilibili
    0 码力 | 34 页 | 650.25 KB | 1 年前
    3
  • pdf文档 告警OnCall事件中心建设方法白皮书

    优化告警规则 类似 PagerDuty FlashDuty 这种产品,一定程度上是可以解决一些告警过多的问题,但如果能从告警规 则的源头做好优化,自然是事半功倍。很多公司的告警规则配置没有原则可循,每次故障复盘先看告警是 否漏报,一线工程师为了不背锅,自然是尽量多地提高告警覆盖面,但这么做的后果,就是告警过多,无 效告警占多数,长此以往,工程师疲惫不堪。 那么告警规则的配置应该遵照一个什 通过排班、认领、升级这些机制,可以确保告警递达指定的人,但要处理告警的话,只有值班人员自己就 未必搞得定了,需要有协同机制把相关人都拉进来一起处理才可以。对于某个故障,可能同时有多个告警 事件产生,大家基于一个统一的故障协同,而不是基于一堆事件分别协同,这就需要把这多个事件收敛成 一个故障,下面我们来聊一下这个收敛逻辑。 告警收敛逻辑 一般收敛逻辑是三级收敛,event -> alert -> incident。举个例子,最原始的告警事件,比如 incident(故障),基于 incident 做协同才比较方便。但是,event 到 alert 是有一个固定的收敛逻辑的,可以通过程序自动收敛,而 alert 到 incident 却很难自动收敛。不过业界也会有一些常见的做法,下面我举几个例子。 1、根据时间做收敛 把告警中心收到的所有告警,按照时间维度做收敛,比如按照分钟颗粒度,一分钟内所有告警收敛成一个 故障,下一分钟所
    0 码力 | 23 页 | 1.75 MB | 1 年前
    3
  • pdf文档 PromQL 从入门到精通

    个实例的场景,通常这多个实例是负载均衡的,查看其中一个实例的分位值和查看总体的分位值 理论上差不太多。而且,如果某个机器有问题,比如某个机器磁盘故障,导致部署在上面的实例 异常,延迟变高,其他实例都是正常的,全局查看延迟数据的时候,每个实例是一条曲线,那个 故障的机器,对应的曲线应该是恰好严重偏离其他曲线,正好可以借机知道具体是哪个实例/机 器出了问题。 _over_time
    0 码力 | 16 页 | 2.77 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
1.6利用夜莺扩展能力打造方位全方位监控系统设计演进实践分享告警OnCall事件中心建设方法白皮皮书白皮书PromQLPrometheus
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩