积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(4)Prometheus(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 4 个.
  • 全部
  • 系统运维
  • Prometheus
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PromQL 从入门到精通

    在 Graph 视图,返回的数据取 决于 step 参数,查询时传给时序库的 step = 10,返回的图形就是每 10s 一个点,step = 20 就是每 20s 一个点,返回的数据的时间间隔取决于 step 参数而非原始数据的上报间隔。 Range Query 理论上是没法绘制 Graph 的(当然有些时序库可能会做容错处理),因为从原 理上说不通。绘图的时候,我们要选择一个时间范围,比如最近一小时,然后传给后端一个 18秒,但是99分位时间是10秒,相差巨大,更容易暴露问 题。这里所谓的99分位延迟10秒,可以理解为,99%的请求都在10秒内返回。 从监控系统角度,如何来存储和计算出99分位值呢?如果每分钟有1亿个请求,难道真的要在监 控系统中存储这1亿个请求,然后排序,然后求取分位值?那这个代价就太大了。监控数据是采 样数据,对准确性要求没有那么的高,有没有什么办法可以降低这个代价呢?这就是 Prometheus (le) (rate(http_request_duration_seconds_bucket[10m])) ) 针对分位值的计算,已经阐述清楚了,但是分位值的计算是个挺重的查询,可能会把后端时序库 打爆,所以很多公司可能在业务埋点SDK中不提供histogram这种方式,只提供summary方 式。 所谓的summary,也是prometheus的一种埋点数据类型,summary也可以计算90分位、99
    0 码力 | 16 页 | 2.77 MB | 1 年前
    3
  • pdf文档 1.6 利用夜莺扩展能力打造全方位监控系统

    Agentd Agentd LoadBalance 1. 单机版Prom 2. 集群版m3db 3. 集群版n9e-tsdb 3种存储方案,按需选择 Agentd 夜莺设计实现 Agentd 数据采集 第四部分 监控系统的核心功能,是数据采集、存储、分析、展示,完 备性看采集能力,是否能够兼容并包,纳入更多生态的能力, 至关重要 夜莺数据采集 01.监控数据采集,all in 活 端口监 控 插件脚 本 日志监 控 网络设 备 中间件 类 数据库 类 • 支持在web上配置采集策略,不同的采集可以指定 不同的探针机器、目标机器,便于管理和知识传 承 • 独创在端上流式读取日志,根据正则提取指标的 机制,轻量易用,无业务侵入性 • 内置集成了多种数据库中间件的采集以及网络设 备的采集,复用telegraf和datadog-agent的能力
    0 码力 | 40 页 | 3.85 MB | 1 年前
    3
  • pdf文档 告警OnCall事件中心建设方法白皮书

    Prometheus 可能有多套)或者 Nightingale, 日志的监控可能用的 Elastalert,如果上云了,可能还会有多套不同的云监控(尤其是多云场景下)。 监控系统的重心,通常是采集、存储、可视化、生成告警事件,但通常都不具有完备的事件后续处理能 力。这里说的后续处理主要包括:多渠道分级通知、告警静默、抑制、收敛聚合、降噪、排班、认领升 级、协同闭环处理等等。监控系统或多或少都有 ncident),最终通知用户的是一个个故 障,大幅降低了打扰性。 不同的告警事件,通常有不同的分发逻辑,比如不同时段不同的分发逻辑:白天用短信通知,晚上用电话 通知,比如对象存储的告警要发给存储团队,物理机故障要发给运维团队。这都可以灵活定义。 也可以配置聚合窗口,比如延迟 120 秒,如果在延迟等待期内,告警自动恢复或被人工处理,则不会发送 该条告警。 IM 的联动,在 FlashDuty 中的一些评论回复,会自动发到 IM 端,进而提升 协同效率。 另外,我们非常建议大家认真处理每一个故障,认真填写故障处理过程、止损手段,这是极好的知识库, 未来再发生类似故障的时候,都可以快速参考。如前文所述,如果某个故障发生之后没有对应的处理动 作,这个故障对应的告警规则可能就是不合理的,需要优化。 总结 告警事件的后续处理,不只
    0 码力 | 23 页 | 1.75 MB | 1 年前
    3
  • pdf文档 B站统⼀监控系统的设计,演进 与实践分享

    Counter ✦ Gauge ✦ 等.. • 时序数据 ✦ 具有统计特性 ✦ 具有规律律性 metric数据特征 选型原则 • 基于开源⽅方案,⼆二次开发 • 具备现代时间序列列数据库的特性 • 活跃项⽬目,具有成熟的⽣生态环境 结论 • prometheus • ⽀支持任意维度label • cncf基⾦金金会 metric • 40w+/s的指标采集 • 10k+
    0 码力 | 34 页 | 650.25 KB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
PromQLPrometheus1.6利用夜莺扩展能力打造方位全方位监控系统告警OnCall事件中心建设方法白皮皮书白皮书设计演进实践分享
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩