 4 【王琼】容器监控架构演进 王琼 YY直播参考文档:https://valyala.medium.com/prometheus-vs-victoriametrics-benchmark-on-node-exporter-metrics-4ca29c75590f 总体架构 总体架构 T H A N K S !0 码力 | 23 页 | 2.17 MB | 1 年前3 4 【王琼】容器监控架构演进 王琼 YY直播参考文档:https://valyala.medium.com/prometheus-vs-victoriametrics-benchmark-on-node-exporter-metrics-4ca29c75590f 总体架构 总体架构 T H A N K S !0 码力 | 23 页 | 2.17 MB | 1 年前3
 告警OnCall事件中心建设方法白皮书
备的监控可能采用的 Zabbix,Kubernetes 的监控可能 用的 Prometheus(Kubernetes 可能有多套,以至于 Prometheus 可能有多套)或者 Nightingale, 日志的监控可能用的 Elastalert,如果上云了,可能还会有多套不同的云监控(尤其是多云场景下)。 监控系统的重心,通常是采集、存储、可视化、生成告警事件,但通常都不具有完备的事件后续处理能 级、协同闭环处理等等。监控系统或多或少都有一些这方面的能力,但是通常都不完备,而这,正是 PagerDuty FlashDuty 这种产品存在的价值。这些产品都是以 Duty 命名,核心就是支持告警 OnCall 值班处理的场景。 对于告警事件的后续处理,有哪些问题和需求以及何为最佳实践?我们从思路方法和工具实践两个方面分 别进行探讨,下面先行探讨思路方法,看看要解决这些问题和需求,我们有哪些可能的解法。 这种产品,一定程度上是可以解决一些告警过多的问题,但如果能从告警规 则的源头做好优化,自然是事半功倍。很多公司的告警规则配置没有原则可循,每次故障复盘先看告警是 否漏报,一线工程师为了不背锅,自然是尽量多地提高告警覆盖面,但这么做的后果,就是告警过多,无 效告警占多数,长此以往,工程师疲惫不堪。 那么告警规则的配置应该遵照一个什么原则呢?虽然每个公司业务不同,总有一些通用的原则可循吧?的0 码力 | 23 页 | 1.75 MB | 1 年前3 告警OnCall事件中心建设方法白皮书
备的监控可能采用的 Zabbix,Kubernetes 的监控可能 用的 Prometheus(Kubernetes 可能有多套,以至于 Prometheus 可能有多套)或者 Nightingale, 日志的监控可能用的 Elastalert,如果上云了,可能还会有多套不同的云监控(尤其是多云场景下)。 监控系统的重心,通常是采集、存储、可视化、生成告警事件,但通常都不具有完备的事件后续处理能 级、协同闭环处理等等。监控系统或多或少都有一些这方面的能力,但是通常都不完备,而这,正是 PagerDuty FlashDuty 这种产品存在的价值。这些产品都是以 Duty 命名,核心就是支持告警 OnCall 值班处理的场景。 对于告警事件的后续处理,有哪些问题和需求以及何为最佳实践?我们从思路方法和工具实践两个方面分 别进行探讨,下面先行探讨思路方法,看看要解决这些问题和需求,我们有哪些可能的解法。 这种产品,一定程度上是可以解决一些告警过多的问题,但如果能从告警规 则的源头做好优化,自然是事半功倍。很多公司的告警规则配置没有原则可循,每次故障复盘先看告警是 否漏报,一线工程师为了不背锅,自然是尽量多地提高告警覆盖面,但这么做的后果,就是告警过多,无 效告警占多数,长此以往,工程师疲惫不堪。 那么告警规则的配置应该遵照一个什么原则呢?虽然每个公司业务不同,总有一些通用的原则可循吧?的0 码力 | 23 页 | 1.75 MB | 1 年前3
 B站统⼀监控系统的设计,演进
与实践分享devops • 热爱新技术,热爱开源 • ⼩小宅男 故事的开始 B站炸了了.舆情监控(括弧笑脸) 我们的挑战 • 技术栈多 • 产品模块复杂 • 业务爆发式增⻓长 • 运维要求⾼高 当前情况: • 覆盖率低 • 误报,漏漏报多 • 告警⻛风暴暴 监控问题爆发: 重新定义的监控系统 ✦ 完整的监控体系 ✦ 科学的告警策略略 ✦ 统⼀一的告警中⼼心 完整的监控体系 具有规律律性 metric数据特征 选型原则 • 基于开源⽅方案,⼆二次开发 • 具备现代时间序列列数据库的特性 • 活跃项⽬目,具有成熟的⽣生态环境 结论 • prometheus • ⽀支持任意维度label • cncf基⾦金金会 metric • 40w+/s的指标采集 • 10k+ 监控⽬目标 • 10+ prometheus节点 现状: • 性能 • ⾼高可⽤用 target target IDC_2 获取 监控⽬目标 告警规则 web push rule push rule 获取监控数据 获取监控数据 推送告警 1. 降低编写规则的成本 2. 降低多idc维护成本 规则管理理⻚页⾯面 例例⼦子 - 业务监控 稿件 账号 Feed PAAS托管 服务树 container http server sdk 注册 获取target0 码力 | 34 页 | 650.25 KB | 1 年前3 B站统⼀监控系统的设计,演进
与实践分享devops • 热爱新技术,热爱开源 • ⼩小宅男 故事的开始 B站炸了了.舆情监控(括弧笑脸) 我们的挑战 • 技术栈多 • 产品模块复杂 • 业务爆发式增⻓长 • 运维要求⾼高 当前情况: • 覆盖率低 • 误报,漏漏报多 • 告警⻛风暴暴 监控问题爆发: 重新定义的监控系统 ✦ 完整的监控体系 ✦ 科学的告警策略略 ✦ 统⼀一的告警中⼼心 完整的监控体系 具有规律律性 metric数据特征 选型原则 • 基于开源⽅方案,⼆二次开发 • 具备现代时间序列列数据库的特性 • 活跃项⽬目,具有成熟的⽣生态环境 结论 • prometheus • ⽀支持任意维度label • cncf基⾦金金会 metric • 40w+/s的指标采集 • 10k+ 监控⽬目标 • 10+ prometheus节点 现状: • 性能 • ⾼高可⽤用 target target IDC_2 获取 监控⽬目标 告警规则 web push rule push rule 获取监控数据 获取监控数据 推送告警 1. 降低编写规则的成本 2. 降低多idc维护成本 规则管理理⻚页⾯面 例例⼦子 - 业务监控 稿件 账号 Feed PAAS托管 服务树 container http server sdk 注册 获取target0 码力 | 34 页 | 650.25 KB | 1 年前3
 PromQL 从入门到精通PromQL大括号里的部分是 selector,查询选择器,用于从一大堆监控数据中,过滤出真正关心 的数据,在 Prometheus 生态里,时序数据的标识,就是一堆标签集合,所以这里的过滤,就 是针对标签做过滤,支持四类操作符:  =:完全匹配,比如 app="clickhouse"  !=:完全不匹配,比如 app!="clickhouse"  =~:正则匹配,比如 app=~"n9e-.*"  后面跟一个时间段,比如 5m、1d、7d、1w,offset 要紧跟查询选择器,比如: sum(http_requests_total{method="GET"} offset 1d) 运算符 PromQL 支持基本的算术运算符和比较运算符,可以对不同的即时向量做运算,这为监控系统 带来了巨大的进步,算术运算符让很多计算不需要在采集端做了,可以轻易挪到服务端,而比较 运算符则为告警逻辑提供了支撑。 算术运算符 by相反的是without): avg(mem_available_percent{app=~"clickhouse|canal"}) by (app) 函数 Prometheus 函数非常多,具体文档参考:https://prometheus.io/docs/prometheus/latest/ querying/functions/ 这一节我们举例说明一些常用的函数。 absent_over_time0 码力 | 16 页 | 2.77 MB | 1 年前3 PromQL 从入门到精通PromQL大括号里的部分是 selector,查询选择器,用于从一大堆监控数据中,过滤出真正关心 的数据,在 Prometheus 生态里,时序数据的标识,就是一堆标签集合,所以这里的过滤,就 是针对标签做过滤,支持四类操作符:  =:完全匹配,比如 app="clickhouse"  !=:完全不匹配,比如 app!="clickhouse"  =~:正则匹配,比如 app=~"n9e-.*"  后面跟一个时间段,比如 5m、1d、7d、1w,offset 要紧跟查询选择器,比如: sum(http_requests_total{method="GET"} offset 1d) 运算符 PromQL 支持基本的算术运算符和比较运算符,可以对不同的即时向量做运算,这为监控系统 带来了巨大的进步,算术运算符让很多计算不需要在采集端做了,可以轻易挪到服务端,而比较 运算符则为告警逻辑提供了支撑。 算术运算符 by相反的是without): avg(mem_available_percent{app=~"clickhouse|canal"}) by (app) 函数 Prometheus 函数非常多,具体文档参考:https://prometheus.io/docs/prometheus/latest/ querying/functions/ 这一节我们举例说明一些常用的函数。 absent_over_time0 码力 | 16 页 | 2.77 MB | 1 年前3
 1.6 利用夜莺扩展能力打造全方位监控系统卡顿 崩溃 链路 连通性 链路质量 服务端 硬件资源 组件服务 业务应用 夜莺介绍:国产开源监控系统 第三部分 国产开源监控产品相对比较匮乏,夜莺希望重新定义国产开 源监控,支持云原生监控,经受了滴滴大规模生产检验 Nightingale 夜莺是新一代国产智能监控平台,既可以解决传统物理机虚拟机的场景,也可以解 决容器的场景。衍生自Open-Falcon和滴滴Odin监控,经受了包括小米、美团、滴滴 备 中间件 类 数据库 类 • 支持在web上配置采集策略,不同的采集可以指定 不同的探针机器、目标机器,便于管理和知识传 承 • 独创在端上流式读取日志,根据正则提取指标的 机制,轻量易用,无业务侵入性 • 内置集成了多种数据库中间件的采集以及网络设 备的采集,复用telegraf和datadog-agent的能力 • 支持statsd的udp协议,用于业务应用的apm监控0 码力 | 40 页 | 3.85 MB | 1 年前3 1.6 利用夜莺扩展能力打造全方位监控系统卡顿 崩溃 链路 连通性 链路质量 服务端 硬件资源 组件服务 业务应用 夜莺介绍:国产开源监控系统 第三部分 国产开源监控产品相对比较匮乏,夜莺希望重新定义国产开 源监控,支持云原生监控,经受了滴滴大规模生产检验 Nightingale 夜莺是新一代国产智能监控平台,既可以解决传统物理机虚拟机的场景,也可以解 决容器的场景。衍生自Open-Falcon和滴滴Odin监控,经受了包括小米、美团、滴滴 备 中间件 类 数据库 类 • 支持在web上配置采集策略,不同的采集可以指定 不同的探针机器、目标机器,便于管理和知识传 承 • 独创在端上流式读取日志,根据正则提取指标的 机制,轻量易用,无业务侵入性 • 内置集成了多种数据库中间件的采集以及网络设 备的采集,复用telegraf和datadog-agent的能力 • 支持statsd的udp协议,用于业务应用的apm监控0 码力 | 40 页 | 3.85 MB | 1 年前3
共 5 条
- 1













