积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(30)Kubernetes(30)

语言

全部中文(简体)(15)英语(12)中文(简体)(2)中文(繁体)(1)

格式

全部PDF文档 PDF(29)PPT文档 PPT(1)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 30 个.
  • 全部
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 GPU Resource Management On JDOS

    GPU Resource Management On JDOS 梁永清 liangyongqing1@jd.com 提供的服务 1. 用于实验的 GPU 容器 2.基于 Kubeflow 的机器学习训练服务 3.模型管理和模型 Serving 服务 Experiment Training Serving 均基于容器,不对业务方直接提供 GPU 物理机 GPU 实验 JDOS 常规的容器服务
    0 码力 | 11 页 | 13.40 MB | 1 年前
    3
  • pdf文档 Node Operator: Kubernetes Node Management Made Simple

    Node Operator: Kubernetes Node Management Made Simple 陈俊(Joe), Ant Financial Agenda • Background and Motivation • Introduction of Operators • Node-Operator • Advanced Topic: • Upgrade Master & Node Components reliably • Canary Rollout • Master & Node Component Versions Management Motivation: Work Order Deployment Worker Order • Upgrade Nodes Versions • Upgrade Node 10.10 Complicated architecture Work order deployment system can not meet the requirements of resource management. Operator Observe Action Analyze • Observe: watch desired resource and actual resource
    0 码力 | 18 页 | 11.70 MB | 1 年前
    3
  • pdf文档 Kubernetes安全求生指南

    NIST在容器安全指南中揭露了五種容器應用最應關注的風險 映像風險 Image Risk 登錄風險 Registry Risk 容器調度平台風險 Orchestrator Risk 容器風險 Container Risk 實體作業系統風險 Host OS Risk ©2019 VMware, Inc. 9 針對Kubernetes的安全強化實作參考: Day 1 & Day 2 for k8s clusters Manages access to k8s API for developers IT Operator IaaS Management Internet User Application User Trust Boundary Trust Boundary Trust Boundary Trust Boundary Authentication and Authorization i. Compliance j. File System Permissions k. User Account Management 所有強化在發佈前都經過測試驗證 您不再需要每回合升級都從頭來過 若發現CVE漏洞官方立刻提供修補 •The following servers are not used
    0 码力 | 23 页 | 2.14 MB | 1 年前
    3
  • pdf文档 在大规模Kubernetes集群上实现高SLO的方法

    the cluster SLIs on Large k8s Cluster 1. Cluster health state A combination value indicates the risk in the cluster. Currently Healthy, Warning and Fatal are the possible value. 2. Success rate A
    0 码力 | 11 页 | 4.01 MB | 1 年前
    3
  • pdf文档 秘钥管理秘钥Turtles all the way down - Securely managing Kubernetes Secrets

    Accessible by users who shouldn’t have access, e.g., CEO ○ Stored in public storage buckets Secret management requirements Identity Require strong identities and least privilege Auditing Verify the use security against penetration. Similarly, poor key management may easily compromise strong algorithms.” NIST SP 800-57, Recommendation for Key Management Keys get old Key rotation ● Key rotation is meant stored cardholder data against disclosure and misuse. 3.6 Fully document and implement all key-management processes and procedures for cryptographic keys used for encryption of cardholder data, including
    0 码力 | 52 页 | 2.84 MB | 1 年前
    3
  • pdf文档 vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIG

    placement options, for both control plane and worker nodes. 2 levels of scheduling and resource management are active. ​Currently no automatic scheduling integration occurs, that is, Kubernetes is not to solve potential issues with CPU and memory intensive workloads ​Kubernetes default resource management ​How it works ​Extending the functionality of Kubernetes ​Using vSphere DRS with Kubernetes pre-container era Active discussions regarding Kubernetes enhancements going on now in Resource Management Working Group – please join in • See Issue #49964 14 Using a NUMA aware hypervisor to solve
    0 码力 | 25 页 | 2.22 MB | 1 年前
    3
  • pdf文档 VMware SIG Deep Dive into Kubernetes Scheduling

    placement options, for both control plane and worker nodes. 2 levels of scheduling and resource management are active. Currently no automatic scheduling integration occurs, that is, Kubernetes is not to solve potential issues with CPU and memory intensive workloads Kubernetes default resource management How it works Extending the functionality of Kubernetes Using vSphere DRS with Kubernetes High pre-container era Active discussions regarding Kubernetes enhancements going on now in Resource Management Working Group – please join in • See Issue #49964 14 Using a NUMA aware hypervisor to solve
    0 码力 | 28 页 | 1.85 MB | 1 年前
    3
  • pdf文档 QCon北京2017/智能化运维/Self Hosted Infrastructure:以自动运维 Kubernetes 为例

    distributed system Self driving infrastructure Topics ● Cluster management systems ● Today’s problems with operating cluster management systems ● A self-driving approach Motivation: microservices components ○ dynamic dependencies ○ fast deployment iteration ● Solution: automation Cluster management system ● Automation ○ Scheduling ○ Deployment ○ Healing ○ Discovery/load balancing ○ Scaling Kubernetes? ● Operational expertise around app management in k8s extends to k8s itself ○ E.g. scaling ● Bootstrapping simplified ● Simply cluster life cycle management ○ E.g. updates ● Upstream improvements
    0 码力 | 73 页 | 1.58 MB | 1 年前
    3
  • pdf文档 KubeCon2020/腾讯会议大规模使用Kubernetes的技术实践

    way to release stateful service Ø Advanced scheduling to improve service stability Ø Quota management to optimize resource orchestration efficiency Ø High performance and comprehensive autoscaling systems like Route System, CMDB, CI, Security Platform, etc. • Declarative application lifecycle management. • Support big data and AI jobs. • Optimize the isolation of resources, and improve resource Service Mesh. • Large-scale and high-performance autoscaling capabilities. • Multi-tenant and quota management. • etc. TKEx Architecture EKS (Elastic Kubernetes Service) TKE (Tencent Kubernetes Engine)
    0 码力 | 19 页 | 10.94 MB | 1 年前
    3
  • pdf文档 QCon北京2018/QCon北京2018-《Kubernetes-+面向未来的开发和部署》-Michael+Chen

    Very manual, no fault tolerance, hard to scale, etc • Scheduling, provisioning, and resource management of multiple containers – Docker, Mesos à Kubernetes Support – AWS, Azure, Google à Kubernetes ContainerImage2 Replicas: 2 Kubernetes 101 at the Highest Level • Container Cluster = “Desired State Management” – Kubernetes Cluster Services (w/API) • Node = Container Host w/agent called “Kubelet” • Application Switch Namespace ‘foo’ PODs – Logical Switch Namespace ‘demo’ PODs – Logical Switch Cluster Management Nodes – Logical Switch Master ‘VM’ etcd NCP API Srv Worker ‘VM’ Pod 1 Pod 2 Worker ‘VM’
    0 码力 | 42 页 | 10.97 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GPUJDOSKubeCon陈俊NodeOperatorKubernetes安全求生指南大规规模大规模集群实现SLO方法秘钥管理TurtlesallthewaydownSecurelymanagingSecretsvmwareonvSphereDeepDiveChinaVMwareSIGintoSchedulingQCon北京2017智能智能化运维SelfHostedInfrastructure自动为例KubeCon2020腾讯会议使用技术实践2018面向未来面向未来开发部署MichaelChen
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩