积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)Kubernetes(23)

语言

全部中文(简体)(12)英语(10)中文(简体)(1)

格式

全部PDF文档 PDF(21)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • Kubernetes
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 K8S安装部署开放服务

    spec: volumes: - name: host-time hostPath: path: "/etc/localtime" volumeMounts: - name: host-time mountPath: "/etc/localtime" volumes: - name: host-time hostPath: path: "/etc/localtime" volumeMounts: //注意有多个! - name: host-time mountPath: "/etc/localtime" volumes: - name: host-time hostPath: path: "/etc/localtime" volumeMounts: //注意有 5 处 - name: host-time mountPath: "/etc/localtime"
    0 码力 | 54 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Advancing the Tactical Edge with K3s and SUSE RGS

    innova- tive edge computing solution, SmartEdge, addresses the increasing need to gather data in real time and perform analysis at the point of collection, supplying imme- diate insight which results in faster as battlefields. The an- alytics enabled and performed by Smart- Edge allow battalions to make real-time, data-driven decisions which dramatically improve operational outcomes and in- crease the probability battlefield, “At the tactical edge, time is a weapon. With edge computing and pro- cessing at the point of data collection, we will give warfighters access to real-time, data-driven insights so they can
    0 码力 | 8 页 | 888.26 KB | 1 年前
    3
  • pdf文档 秘钥管理秘钥Turtles all the way down - Securely managing Kubernetes Secrets

    configurations, API keys, and other small bits of information needed by applications at build or run time Why protect secrets? ● Attractive target ○ Controls access or use of sensitive resources ● Common compromised ○ Time available for attempts to penetrate physical, procedural, and logical access ○ Time available for computationally intensive cryptanalytic attacks ● A cryptoperiod is the time during which for keys that have reached the end of their cryptoperiod (for example, after a defined period of time has passed and/or after a certain amount of cipher-text has been produced by a given key) https://www
    0 码力 | 52 页 | 2.84 MB | 1 年前
    3
  • pdf文档 在大规模Kubernetes集群上实现高SLO的方法

    which can represent user experience. SLO is the object that try to meets all SLIs in a period of time. SLA = SLO + Punishment. SLA/SLO/SLI What we concern about Large k8s Cluster What happened about unhealthy nodes may not be delivered in time, success rate would decrease consequently. 4. Centralized Components Availability A ratio value indicates the time in which the cluster is available. It is master components. The success standard and reason classification The success standard: Pod Feature Time limit Success condition Pod RestartPolicy=Always 1min (example value) the status of {.Status.Conditions
    0 码力 | 11 页 | 4.01 MB | 1 年前
    3
  • ppt文档 绕过conntrack,使用eBPF增强 IPVS优化K8s网络性能

    mode • Services are organized in hash table • IPVS DNAT • conntrack/iptables SNAT • Pros • O(1) time complexity in control/data plane • Stably runs for two decades • Support rich scheduling algorithm differ • Performance of a cluster in different time slot may differ • Due to CPU oversold • Suggestion: • Run the test against the same cluster during near time • Make CPU the bottleneck • 1 CPU handles
    0 码力 | 24 页 | 1.90 MB | 1 年前
    3
  • pdf文档 vmware组Kubernetes on vSphere Deep Dive KubeCon China VMware SIG

    Quotas Prioritization Isolation 18 Kubernetes built-in resource management Enforcement Run time enforcement at worker node level CPU “Compressible” = violation results in throttling Memory “Uncompressible” “Uncompressible” = violation triggers “death penalty” of Pod hosting container Scheduling time enforcement ResourceQuota admission controller will refuse to schedule a Pod that would violate limit After (Master) (Master) (Workers) (Worker) Thank You Questions? 22 remaining slides not presented to meet time constraints - included in published deck for reference 23 Configuring VM affinity rules Quorum dictates
    0 码力 | 25 页 | 2.22 MB | 1 年前
    3
  • pdf文档 VMware SIG Deep Dive into Kubernetes Scheduling

    Quotas Prioritization Isolation 18 Kubernetes built-in resource management Enforcement Run time enforcement at worker node level CPU “Compressible” = violation results in throttling Memory “Uncompressible” “Uncompressible” = violation triggers “death penalty” of Pod hosting container Scheduling time enforcement ResourceQuota admission controller will refuse to schedule a Pod that would violate limit After (Master) (Master) (Workers) (Worker) Thank You Questions? 22 remaining slides not presented to meet time constraints - included in published deck for reference 23 Open Issues (WIP) vSphere Cloud Provider
    0 码力 | 28 页 | 1.85 MB | 1 年前
    3
  • pdf文档 Jib Kubecon 2018 Talk

    build layer 1 layer 2 layer 3 total time push layer 4 github.com/GoogleContainerTools/jib Containerizing with Jib layer 1 layer 2 layer 3 build push total time layer 4 github.com/GoogleContainerTools/jib com/GoogleContainerTools/jib Containerizing with Jib (cached) layer 1 layer 2 layer 3 cached total time layer 4 cached cached github.com/GoogleContainerTools/jib Jib vs Docker github.com/GoogleContainerTools/jib
    0 码力 | 90 页 | 2.84 MB | 1 年前
    3
  • pdf文档 Using Kubernetes for handling second screen experience of european tv show

    signing up during commercial break. Show-time !! First row winner Second row winner Final winner Tease before commercial break End of last show Time 1 week - 1 hour 8 min 15 min 15 min 20min
    0 码力 | 28 页 | 3.86 MB | 1 年前
    3
  • pdf文档 Kubernetes & YARN: a hybrid container cloud

    spark, flink Latency Sensitive Insensitive Priority high low Traffic pattern Peak at day time Peak at night time Fault tolerance should not fail Fail and retry Complementary ! ���� ��������� ��������
    0 码力 | 42 页 | 25.48 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
K8S安装部署开放服务AdvancingtheTacticalEdgewithK3sandSUSERGS秘钥管理TurtlesallwaydownSecurelymanagingKubernetesSecrets大规规模大规模集群实现SLO方法绕过conntrack使用eBPF增强IPVS优化K8s网络性能vmwareonvSphereDeepDiveKubeConChinaVMwareSIGintoSchedulingJibKubecon2018Talk
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩