积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(290)VirtualBox(112)Apache Kyuubi(44)OpenShift(32)Pandas(32)机器学习(17)rancher(8)Kubernetes(6)Apache Karaf(6)Hadoop(5)

语言

全部英语(230)中文(简体)(56)英语(3)中文(繁体)(1)

格式

全部PDF文档 PDF(266)其他文档 其他(23)PPT文档 PPT(1)
 
本次搜索耗时 0.386 秒,为您找到相关结果约 290 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • OpenShift
  • Pandas
  • 机器学习
  • rancher
  • Kubernetes
  • Apache Karaf
  • Hadoop
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AWS LAMBDA Tutorial

    time you consume - there is no charge when your code is not running. How AWS Lambda Works? The block diagram that explains the working of AWS Lambda in five easy steps is shown below: 1. AWS Lambda details given are as follows: client_context.client.installation_id client_context.client.app_title client_context.client.app_version_name client_context.client.app_version_code client_context device when used with aws mobile sdk .It will give details like version name and code, client id, title , app package name.It can be null. getIdentity() this will give details about the amazon cognito
    0 码力 | 393 页 | 13.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.3 In [760]: axes[0].set_title(’Not interpolated’) Out[760]: In [761]: axes[1].set_title(’Interpolated’) Out[761]: title(’A’) Out[902]: In [903]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[903]:
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.2 Service Mesh 的安装、使用和发行注记信息

    ConsoleYAMLSample metadata: name: example spec: targetResource: apiVersion: batch/v1 kind: Job title: Example Job description: An example Job YAML sample yaml: | apiVersion: batch/v1 kind: consolequickstarts ... summary: failed: Try the steps again. success: Your Spring application is running. title: Run the Spring application conclusion: >- Your Spring application is deployed and ready. 1 OpenShift 法 `code block`{{copy}} `code block`{{execute}} 注意 注意 如果使用 execute 语法,无论您是否安装了 Web Terminal Operator,都会出现 Copy to clipboard 操作。 8.4.8.2. 多行代 多行代码 码片段的 片段的语 语法 法 ``` multi line code block ```{{copy}}
    0 码力 | 44 页 | 651.51 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    'WrittenWork'] The data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields, title and description, are self-explanatory. Let’s take a look at for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). On the other hand, a DSC block (figure 4-21) performs two step convolution. In the first step, the input is convolved with m (dk define a get_conv_builder() function that chooses between a regular convolution block and a depthwise convolution block. LEARNING_RATE = 0.001 N_CLASSES = 3 layer_id = -1 def get_layer_id(): global
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.1 In [744]: axes[0].set_title(’Not interpolated’) Out[744]: In [745]: axes[1].set_title(’Interpolated’) Out[745]: title(’A’) Out[885]: In [886]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[886]:
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.2 In [744]: axes[0].set_title(’Not interpolated’) Out[744]: In [745]: axes[1].set_title(’Interpolated’) Out[745]: title(’A’) Out[886]: In [887]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[887]:
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    raised where arithmetic would broadcast ... ValueError: Invalid broadcasting comparison [(1, 2)] with block values In [8]: df + (1, 2) Out[8]: 0 1 0 1 3 1 3 5 2 5 7 In [9]: df == (1, 2, 3) ...: # length “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of can also disable this feature via the expand_frame_repr option. This will print the table in one block. DataFrame column attribute access and IPython completion If a DataFrame column label is a valid
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str. title(). In [40]: firstlast = pd.DataFrame({"string":
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str.title(). In [40]: firstlast = pd.DataFrame({"string":
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str.title(). In [40]: firstlast = pd.DataFrame({"string":
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
共 290 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 29
前往
页
相关搜索词
AWSLAMBDATutorialpandaspowerfulPythondataanalysistoolkit0.7OpenShiftContainerPlatform4.2ServiceMesh安装使用发行注记信息EfficientDeepLearningBookEDLChapterArchitectures0.241.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩