AWS LAMBDA Tutorialtime you consume - there is no charge when your code is not running. How AWS Lambda Works? The block diagram that explains the working of AWS Lambda in five easy steps is shown below: 1. AWS Lambda details given are as follows: client_context.client.installation_id client_context.client.app_title client_context.client.app_version_name client_context.client.app_version_code client_context device when used with aws mobile sdk .It will give details like version name and code, client id, title , app package name.It can be null. getIdentity() this will give details about the amazon cognito0 码力 | 393 页 | 13.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.3“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.3 In [760]: axes[0].set_title(’Not interpolated’) Out[760]:In [761]: axes[1].set_title(’Interpolated’) Out[761]: title(’A’) Out[902]: In [903]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[903]: 0 码力 | 297 页 | 1.92 MB | 1 年前3
OpenShift Container Platform 4.2
Service Mesh 的安装、使用和发行注记信息ConsoleYAMLSample metadata: name: example spec: targetResource: apiVersion: batch/v1 kind: Job title: Example Job description: An example Job YAML sample yaml: | apiVersion: batch/v1 kind: consolequickstarts ... summary: failed: Try the steps again. success: Your Spring application is running. title: Run the Spring application conclusion: >- Your Spring application is deployed and ready. 1 OpenShift 法 `code block`{{copy}} `code block`{{execute}} 注意 注意 如果使用 execute 语法,无论您是否安装了 Web Terminal Operator,都会出现 Copy to clipboard 操作。 8.4.8.2. 多行代 多行代码 码片段的 片段的语 语法 法 ``` multi line code block ```{{copy}}0 码力 | 44 页 | 651.51 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures'WrittenWork'] The data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields, title and description, are self-explanatory. Let’s take a look at for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). On the other hand, a DSC block (figure 4-21) performs two step convolution. In the first step, the input is convolved with m (dk define a get_conv_builder() function that chooses between a regular convolution block and a depthwise convolution block. LEARNING_RATE = 0.001 N_CLASSES = 3 layer_id = -1 def get_layer_id(): global0 码力 | 53 页 | 3.92 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.1“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.1 In [744]: axes[0].set_title(’Not interpolated’) Out[744]:In [745]: axes[1].set_title(’Interpolated’) Out[745]: title(’A’) Out[885]: In [886]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[886]: 0 码力 | 281 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.2“relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of analysis toolkit, Release 0.7.2 In [744]: axes[0].set_title(’Not interpolated’) Out[744]:In [745]: axes[1].set_title(’Interpolated’) Out[745]: title(’A’) Out[886]: In [887]: df[’B’].plot(ax=axes[0,1]); axes[0,1].set_title(’B’) Out[887]: 0 码力 | 283 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.24.0raised where arithmetic would broadcast ... ValueError: Invalid broadcasting comparison [(1, 2)] with block values In [8]: df + (1, 2) Out[8]: 0 1 0 1 3 1 3 5 2 5 7 In [9]: df == (1, 2, 3) ...: # length “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of can also disable this feature via the expand_frame_repr option. This will print the table in one block. DataFrame column attribute access and IPython completion If a DataFrame column label is a valid0 码力 | 2973 页 | 9.90 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str. title(). In [40]: firstlast = pd.DataFrame({"string":0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str.title(). In [40]: firstlast = pd.DataFrame({"string":0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.5 Block manager rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758 4 “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real-world data analysis in Python. Additionally, it has the broader goal of for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str.title(). In [40]: firstlast = pd.DataFrame({"string":0 码力 | 3605 页 | 14.68 MB | 1 年前3
共 290 条
- 1
- 2
- 3
- 4
- 5
- 6
- 29













