积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(180)VirtualBox(110)Pandas(32)机器学习(13)OpenShift(12)VMWare(2)Apache Kyuubi(2)Apache Karaf(2)Kubernetes(1)Istio(1)

语言

全部英语(156)中文(简体)(24)

格式

全部PDF文档 PDF(178)其他文档 其他(2)
 
本次搜索耗时 0.560 秒,为您找到相关结果约 180 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Pandas
  • 机器学习
  • OpenShift
  • VMWare
  • Apache Kyuubi
  • Apache Karaf
  • Kubernetes
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.10 predict_generator . . . . 3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3.10 predict_generator . . . . 进行批量训练 与测试。请参阅 模型文档。 或 者, 你 可 以 编 写 一 个 生 成 批 处 理 训 练 数 据 的 生 成 器, 然 后 使 用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。 你可以在 CIFAR10 example 中找到实践代码。 3.3.10 在验证集的误差不再下降时,如何中断训练?
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    6.774e-136 =============================================================================== coef std err z P>|z| [95.0% Conf. Int.] ------------------------------------------------------------------------------- categorical type Series with dropna=True (GH9443) • Fixed mising numeric_only option for DataFrame.std/var/sem (GH9201) • Support constructing Panel or Panel4D with scalar data (GH8285) • Series text datetime64[ns, US/Eastern] In [47]: stz.dt.tz Out[47]: STD> You can also chain these types of operations: In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    to performing these operations on, for example, a DataFrame of slice objects: – sum, prod, mean, std, var, skew, kurt, corr, and cov • read_html now defaults to None when reading, and falls back on bs4 between_time can now select times across midnight (GH1871) • Series constructor can now handle generator as input (GH1679) • DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924) A bar count 3.000000 mean 0.454566 std 0.129985 min 0.359373 25% 0.380519 50% 0.401666 75% 0.502163 max 0.602661 foo count 5.000000 mean -0.450546 std 0.318867 min -0.904623 25% -0.463909
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    the z-score across the major_axis In [46]: result = panel.apply( ....: lambda x: (x-x.mean())/x.std(), ....: axis=’major_axis’) ....: In [47]: result Out[47]: Dimensions: Panel apply() operating on cross-sectional slabs. (GH1148) In [49]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T In [50]: result = panel.apply(f, axis = [’items’,’major_axis’]) In [51]: result Out[51]: std, var, skew, kurt, corr, and cov 36 Chapter 1. What’s New pandas: powerful Python data analysis toolkit
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    analysis toolkit, Release 1.4.2 In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() titanic[["Age", "Fare"]].describe() Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38 In [26]: grouped = df.groupby(["month", "week"]) In [27]: grouped["x"].agg([np.mean, np.std]) Out[27]: mean std month week 5 1 63.653367 40.601965 2 78.126605 53.342400 3 92.091886 57.630110 6 1 81
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    analysis toolkit, Release 1.4.4 In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() titanic[["Age", "Fare"]].describe() Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38 In [26]: grouped = df.groupby(["month", "week"]) In [27]: grouped["x"].agg([np.mean, np.std]) Out[27]: mean std month week 5 1 63.653367 40.601965 2 78.126605 53.342400 3 92.091886 57.630110 6 1 81
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    describe() Out[38]: B A 1 count 1.000000 mean 4.000000 std NaN min 4.000000 25% 4.000000 50% 4.000000 75% 4.000000 ... ... 5 mean 7.000000 std 1.414214 min 6.000000 25% 6.500000 50% 7.000000 75% Out[42]: A B 0 count 2 1.000000 mean 1 4.000000 std 0 NaN min 1 4.000000 25% 1 4.000000 50% 1 4.000000 75% 1 4.000000 ... .. ... 1 mean 5 7.000000 std 0 1.414214 min 5 6.000000 25% 5 6.500000 50% the z-score across the major_axis In [46]: result = panel.apply( ....: lambda x: (x-x.mean())/x.std(), ....: axis=’major_axis’) ....: In [47]: result Out[47]: Dimensions:
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    numerical data of my data table In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 The describe() titanic[["Age", "Fare"]].describe() Out[6]: Age Fare count 714.000000 891.000000 mean 29.699118 32.204208 std 14.526497 49.693429 min 0.420000 0.000000 25% 20.125000 7.910400 50% 28.000000 14.454200 75% 38 In [26]: grouped = df.groupby(["month", "week"]) In [27]: grouped["x"].agg([np.mean, np.std]) Out[27]: mean std month week 5 1 63.653367 40.601965 2 78.126605 53.342400 3 92.091886 57.630110 6 1 81
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706 pandas.core.window.Rolling.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707 pandas.core.window.Rolling.min var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1711 pandas.core.window.Expanding.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1711 pandas.core.window.Expanding.min mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1714 pandas.core.window.EWM.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1714 pandas.core.window.EWM.var
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 pandas.core.window.Rolling.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1712 pandas.core.window.Rolling.min var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1716 pandas.core.window.Expanding.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717 pandas.core.window.Expanding.min mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719 pandas.core.window.EWM.std . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719 pandas.core.window.EWM.var
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
共 180 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 18
前往
页
相关搜索词
Keras基于Python深度学习pandaspowerfuldataanalysistoolkit0.170.120.131.40.141.50rc00.19
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩