积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(227)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(18)Apache Flink(9)边缘计算(4)Kubernetes(3)Istio(1)rancher(1)

语言

全部英语(219)中文(简体)(8)

格式

全部PDF文档 PDF(203)其他文档 其他(24)
 
本次搜索耗时 0.197 秒,为您找到相关结果约 227 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Apache Flink
  • 边缘计算
  • Kubernetes
  • Istio
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    accuracy. Hence, this is a trade-off. We also ensure that the tokenized input results in an integer sequence with exactly 250 tokens. This might mean padding short texts with padding tokens and truncating tokenize, by truncating # the rest of the sequence. max_seq_len = 100 vectorization_layer = tf.keras.layers.TextVectorization( max_tokens=vocab_size, output_sequence_length=max_seq_len) Once we have initialized are confident will not be in the vocabulary. edl_sequence_output = vectorization_layer( [['efficient deep learning x123!']]).numpy()[0, :4] edl_sequence_output array([ 1, 1379, 1585, 1]) The code snippet
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stream S1 and stream S2 11 Vasiliki Kalavri | Boston University 2020 Operator types (II) • Sequence Operators capture the arrival of an ordered set of events. • common in pattern languages • events stream is a sequence of unbounded length, where tuples are ordered by their arrival time. Sequence: Let t1, … ,tn be tuples from a relation R. The list S = [t1, … ,tn] is called a sequence, of length The empty sequence [ ] has length 0. We use t ∈ S to denote that, for some 1 ≤ i ≤ n, ti = t. 23 Vasiliki Kalavri | Boston University 2020 Model and formalization (II) Pre-sequence (prefix): Let
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    time-series plots. • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) • added option display.chop_threshold to control display of small numerical completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a dtype: float64 1.15.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    time-series plots. • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) • added option display.chop_threshold to control display of small numerical completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a dtype: float64 1.14.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.4 text_to_word_sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 图像预处理 . . . . . . . . . . . HDF5Matrix [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 20.3 Sequence [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 20.4 to_categorical 这是基于之前定义的视觉模型(权重被重用)构建的视频编码 encoded_frame_sequence = TimeDistributed(vision_model)(video_input) # 输出为向量的序列 encoded_video = LSTM(256)(encoded_frame_sequence) # 输出为一个向量 # 这是问题编码器的模型级表示,重复使用与之前相同的权重:
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    time-series plots. • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) • added option display.chop_threshold to control display of small numerical completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a Release 0.15.2 1.19.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    time-series plots. • added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979) • added option display.chop_threshold to control display of small numerical completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a Release 0.15.1 1.18.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a g -0.566048 1.4.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ DataFrame (PR296) • Added Series.isin function which checks if each value is contained in a passed sequence (GH289) • Added float_format option to Series.to_string • Added skip_footer (GH291) and converters
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a 790509 g 1.109413 1.2.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ DataFrame (PR296) • Added Series.isin function which checks if each value is contained in a passed sequence (GH289) • Added float_format option to Series.to_string 1.3. v.0.6.1 (December 13, 2011) 9 pandas:
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    completion (GH554) • Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338) • Can pass a list of functions to aggregate with groupby on a 790509 g 1.109413 1.3.4 Changes to Series [] operator As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ DataFrame (PR296) • Added Series.isin function which checks if each value is contained in a passed sequence (GH289) • Added float_format option to Series.to_string • Added skip_footer (GH291) and converters
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
共 227 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 23
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesStreaminglanguagesandoperatorsemanticsCS591K1DataStreamProcessingAnalyticsSpring2020pandaspowerfulPythondataanalysistoolkit0.140.13Keras基于深度学习0.150.7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩