《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationplethora of choices that we face when training a deep learning model in the computer vision domain. A Search Space for n parameters is a n-dimensional region such that a point in such a region is a set of each of those parameters. The parameters can take discrete or continuous values. It is called a "search" space because we are searching for a point in which minimizes (or maximizes) an Evaluation Function example for choosing quantization and/or clustering techniques for model optimization. We have a search space which has two boolean valued parameters: quantization and clustering. A $$True$$ value means0 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionproblems. Machine learning in turn is one approach towards artificial intelligence. Deep learning with neural networks has been the dominant methodology of training new machine learning models for the past decade Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012): 1097-1105. do linear algebra operations the ImageNet dataset. 2 Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse rectifier neural networks." Proceedings of the fourteenth international conference on artificial intelligence and0 码力 | 21 页 | 3.17 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewshuffle_weights(bert_classifier) return bert_classifier Let’s invoke the training with the BERT-Small model architecture, but not its weights (we will set the keep_tfhub_weights parameter to False). bert_small_fro Using a pre-trained BERT-Base model achieves a best accuracy of 93.97%, while using the same architecture but not the pre-trained model achieves a best accuracy of 90.07%. Refer to figure 6-9. Figure directly optimize for similarity between and , but the authors found that it was better to add a small neural network referred to as the ‘projection head’ (represented by the function ) to first project the0 码力 | 31 页 | 4.03 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesimport text_to_word_sequence # NLTK Import try: from nltk.corpus import wordnet # Placeholder search to ensure wordnet data is available. wordnet.synsets('hello') except LookupError as e: import implements random shuffling: # NLTK Import try: from nltk.tokenize import sent_tokenize # Placeholder search to ensure wordnet data is available. sent_tokenize('hello') except LookupError as e: import nltk these transformations is that they are intuitive and can be applied without changes to the model architecture. Their benefit is clear in the low data situations as demonstrated through the projects. In the0 码力 | 56 页 | 18.93 MB | 1 年前3
机器学习课程-温州大学-08深度学习-深度卷积神经网络经网络结构,由谷歌团队于2019年提出,该 模型在图像分类、目标检测和图像分割等任 务中取得了不错的结果。 EfficientNet的设计思路来源于模型优化的 两个主要思想: 神经网络结构搜索(Neural Architecture Search,NAS)和模型融合。 其主要贡献在于开创性地提出了通过均匀缩 放(Accurate Scaling)来调整网络深度 、宽度和分辨率的方法。 23 3.其它现代网络 EfficientNet Document Recognition (Yann LeCun, 1998) • AlexNet : ImageNet Classification with Deep Convolutional Neural Networks (Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012) 31 参考文献 • VGG:Very Deep MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (Andrew G. Howard et al., 2017) • EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (Mingxing Tan and0 码力 | 32 页 | 2.42 MB | 1 年前3
PyTorch Release Notesand Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility and speed as a deep learning framework and provides accelerated NumPy-like functionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families. For a list of GPUs to which this compute capability corresponds, see0 码力 | 365 页 | 2.94 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesmagazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing to their gains. Sometimes, it can be rewarding to go back to the drawing board and experiment with another architecture that better suits the task. As an analogy, when renovating a house to improve the lighting, it architectural breakthroughs in the field of neural networks. It introduced the idea of stacking layers to learn complex relationships. Convolutional Neural Nets (CNNs) were another important breakthrough0 码力 | 53 页 | 3.92 MB | 1 年前3
动手学深度学习 v2.0实现更复杂的模型奠定了基础。接下来,在 6节 和 7节 中,我们介绍了卷积神经网络(convolutional neural network,CNN),这是构成大多数现代计算机视觉系统骨干的强大工具。随后,在 8节 和 9节 中,我们引入了循环神经网络(recurrent neural network,RNN),这是一种利用数据中的时间或序列 结构的模型,通常用于自然语言处理和时间序列预测。在 latt感知器学习 算法的原型,被称为“赫布学习”。这个算法也为当今深度学习的许多随机梯度下降算法奠定了基础:强化期 望行为和减少不良行为,从而在神经网络中获得良好的参数设置。 神经网络(neural networks)的得名源于生物灵感。一个多世纪以来(追溯到1873年亚历山大·贝恩和1890年 詹姆斯·谢林顿的模型),研究人员一直试图组装类似于相互作用的神经元网络的计算电路。随着时间的推移, 接的多层感知机中。因为这些网络特征元素的顺序是不变的,因此最优的结果是利用先验知识,即利用相近 像素之间的相互关联性,从图像数据中学习得到有效的模型。 本章介绍的卷积神经网络(convolutional neural network,CNN)是一类强大的、为处理图像数据而设计的 神经网络。基于卷积神经网络架构的模型在计算机视觉领域中已经占主导地位,当今几乎所有的图像识别、 目标检测或语义分割相关的学术竞赛和商业应用都以这种方法为基础。0 码力 | 797 页 | 29.45 MB | 1 年前3
keras tutorialis prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the ................................................................................ 11 Artificial Neural Networks ....................................................................................... ..... 12 Convolutional Neural Network (CNN) ........................................................................................................... 13 Recurrent Neural Network (RNN) ..........0 码力 | 98 页 | 1.57 MB | 1 年前3
Keras: 基于 Python 的深度学习库noise_shape=(batch_size, 1, features)。 • seed: 一个作为随机种子的 Python 整数。 参考文献 • Dropout: A Simple Way to Prevent Neural Networks from Overfitting 5.2.4 Flatten [source] keras.layers.Flatten() 将输入展平。不影响批量大小。 例 关于 Transla- tion • On the Properties of Neural Machine Translation: Encoder-Decoder Approaches 关于 KERAS 网络层 94 • Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling • A Theoretically Theoretically Grounded Application of Dropout in Recurrent Neural Networks 5.6.4 LSTM [source] keras.layers.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_ini0 码力 | 257 页 | 1.19 MB | 1 年前3
共 384 条
- 1
- 2
- 3
- 4
- 5
- 6
- 39













