积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(272)VirtualBox(113)Apache Kyuubi(44)Pandas(32)OpenShift(29)机器学习(26)Kubernetes(4)边缘计算(4)Apache Karaf(4)Apache Flink(3)

语言

全部英语(218)中文(简体)(52)英语(2)

格式

全部PDF文档 PDF(247)其他文档 其他(24)DOC文档 DOC(1)
 
本次搜索耗时 0.064 秒,为您找到相关结果约 272 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • 机器学习
  • Kubernetes
  • 边缘计算
  • Apache Karaf
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    conda terminal using the below command: spyder To ensure everything was installed correctly, import all the modules, it will add everything and if anything went wrong, you will get module not found Now save your file, restart your terminal and start keras, your backend will be changed. >>> import keras as k using theano backend. Keras 11 Deep learning is an evolving subfield neural networks. A simple sequential model is as follows: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential() model.add(Dense(512, activation='relu'
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential model = Sequential() 可以简单地使用 .add() 来堆叠模型: KERAS: 基于 PYTHON 的深度学习库 2 from keras.layers import Dense model.add(Dense(units=64, activation='relu' 顺序模型是多个网络层的线性堆叠。 你可以通过将层的列表传递给 Sequential 的构造函数,来创建一个 Sequential 模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_shape=(784,)), Activation('relu') metrics=['accuracy']) # 均方误差回归问题 model.compile(optimizer='rmsprop', loss='mse') # 自定义评估标准函数 import keras.backend as K def mean_pred(y_true, y_pred): return K.mean(y_pred) model.compile(optimizer='rmsprop'
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you modelscope import AutoModelForCausalLM, AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非常简单。下面我们将展示一个如何使用它的示例: ... # Reuse the code before `model.generate()` in the last code snippet from transformers import TextStreamer about large language models."} ], }' 或者您可以按照下面所示的方式,使用 openai Python 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Apache Karaf Decanter 2.x - Documentation

    meaning that you can simple add your metrics to the Decanter Prometheus servlet. You just have to import io.prometheus* packages and simple use the regular Prometheus code: Apache Karaf Decanter 2.x - Your code here. inprogressRequests.dec(); } } Don’t forget to import io.prometheus* packages in your bundle MANIFEST.MF: Import-Package: io.prometheus.client;version="[0.8,1)" That’s the only thing karaf.decanter.sample.collector; import org.osgi.framework.SynchronousBundleListener; import org.osgi.service.event.EventAdmin; import org.osgi.service.event.Event; import java.util.HashMap; public class
    0 码力 | 64 页 | 812.01 KB | 1 年前
    3
  • pdf文档 Apache Karaf Decanter 1.x - Documentation

    karaf.decanter.sample.collector; import org.osgi.framework.SynchronousBundleListener; import org.osgi.service.event.EventAdmin; import org.osgi.service.event.Event; import java.util.HashMap; public class collector; import org.osgi.framework.BundleActivator; import org.osgi.framework.BundleContext; import org.osgi.framework.ServiceReference; import org.osgi.framework.ServiceRegistration; import org.osgi.service service.event.EventAdmin; import org.osgi.util.tracker.ServiceTracker; public class Activator implements BundleActivator { private BundleCollector collector; public void start(final BundleContext bundleContext)
    0 码力 | 67 页 | 213.16 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    #@save import collections import hashlib import math import os import random import re import shutil import sys import tarfile import time import zipfile from collections import defaultdict defaultdict import pandas as pd import requests from IPython import display from matplotlib import pyplot as plt from matplotlib_inline import backend_inline d2l = sys.modules[__name__] 本书中的大部分代码都是基于PyT #@save import numpy as np import torch (continues on next page) 目录 5 (continued from previous page) import torchvision from PIL import Image from torch import nn from torch.nn import functional
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 BAETYL 0.1.6 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Import the example configuration (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 13 How to import third-party libraries for Python runtime 91 13.1 Import requests third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 13.2 Import Pytorch third-party . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 14 How to import third-party libraries for Node runtime 99 14.1 Import Lodash third-party libraries . . . . . . . . . . . . . . . . . . . .
    0 码力 | 120 页 | 7.27 MB | 1 年前
    3
  • pdf文档 BAETYL 1.0.0 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Import the example configuration (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 How to import third-party libraries for Python runtime 101 14.1 Import requests third-party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14.2 Import Pytorch third-party . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 15 How to import third-party libraries for Node runtime 109 15.1 Import Lodash third-party libraries . . . . . . . . . . . . . . . . . . . .
    0 码力 | 145 页 | 9.31 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    displaying the results. import numpy as np import cv2 from matplotlib import pyplot as plt from keras.preprocessing.image import ImageDataGenerator from urllib.request import urlopen IMG_SIZE = 224 function takes the name of the dataset and loads the training and the validation splits as follows. import tensorflow_datasets as tfds def make_dataset(name): loadfn = lambda x: tfds.load(name, split=x) resize them to 264x264 size. This is a required step because our model expects fixed-sized images. import tensorflow as tf # Target image size IMG_SIZE = 264 def dsitem_to_tuple(item): return (item['image']
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    to see if there are any problems: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os.path.abspath(pyflink.__ ˓→file__)))" # It will output a path messages in the log file as following: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os.path.abspath(pyflink.__ ˓→file__)))" (continues on next page) latest version Create a TableEnvironment [1]: # Create a batch TableEnvironment from pyflink.table import EnvironmentSettings, TableEnvironment env_settings = EnvironmentSettings.in_batch_mode() table_env
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
共 272 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 28
前往
页
相关搜索词
kerastutorialKeras基于Python深度学习AI模型千问qwen中文文档ApacheKarafDecanterDocumentation动手v2BAETYL0.11.0EfficientDeepLearningBookEDLChapterTechniquesPyFlink1.15Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩