积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(206)VirtualBox(85)Apache Kyuubi(44)OpenShift(29)Pandas(16)机器学习(11)rancher(4)Apache Flink(4)Docker(2)dapr(2)

语言

全部英语(161)中文(简体)(45)

格式

全部PDF文档 PDF(183)其他文档 其他(23)
 
本次搜索耗时 0.096 秒,为您找到相关结果约 206 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • OpenShift
  • Pandas
  • 机器学习
  • rancher
  • Apache Flink
  • Docker
  • dapr
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    3,实现如下: In [43]: from torch import nn # 导入神经网络子库 # 创建一层 Wx+b,输出节点为 3, 输出节点数为 4 fc = nn.Linear(3, 4) fc.bias # 查看偏置向量 Out[43]: Parameter containing: tensor([-0.3838, -0.4073, -0.3051, -0 个节点,输出 3 个节点的网络层,并通过全连接层的 kernel 成员名查 看其权值矩阵?: In [45]: # 定义全连接层的输出节点为 3, 输入节点为 4 fc = nn.Linear(4, 3) fc.weight # 查看权值矩阵 W Out[45]: Parameter containing: tensor([[-0.1410, 0.1454, -0.3955 创建全连接层,指定输入节点数和输出节点数 fc = nn.Linear(28*28, 512) # 通过 fc 类实例完成一次全连接层的计算,返回输出张量 h1 = fc(x) print('h1:', h1.shape) Out[2]: h1: torch.Size([4, 512]) 预览版202112 6.2 全连接层 5 上述通过一行代码即可以创建一层全连接层实例 fc,并指定输入节点数为
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    MHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nCXgRGQkWMkp0IfnmocuJGHAkPiZyLErq2fTN1tW26qAF4ldkxaq MHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nCXgRGQkWMkp0IfnmocuJGHAkPiZyLErq2fTN1tW26qAF4ldkxaq MHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nCXgRGQkWMkp0IfnmocuJGHAkPiZyLErq2fTN1tW26qAF4ldkxaq
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 CIS Benchmark Rancher Self-Assessment Guide - v2.4

    service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml Expected result: 'false' is equal to service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml Expected result: 'Webhook' not have service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml CIS Benchmark Rancher Self-Assessment
    0 码力 | 54 页 | 447.77 KB | 1 年前
    3
  • pdf文档 CIS 1.5 Benchmark - Self-Assessment Guide - Rancher v2.5

    service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml Expected result: 'false' is equal to service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml Expected result: 'Webhook' not have service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Audit Config: /bin/cat /var/lib/kubelet/config.yaml CIS 1.5 Benchmark - Self-Assessment
    0 码力 | 54 页 | 447.97 KB | 1 年前
    3
  • pdf文档 CIS 1.6 Benchmark - Self-Assessment Guide - Rancher v2.5.4

    kubelet service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Expected Result: '' is not present 4.2.2 Ensure that the --authorization-mode argument is kubelet service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Expected Result: '' is not present CIS 1.6 Benchmark - Self-Assessment Guide - Rancher v2 kubelet service. For example: systemctl daemon-reload systemctl restart kubelet.service Audit: /bin/ps -fC kubelet Expected Result: '' is not present 4.2.4 Ensure that the --read-only-port argument is set
    0 码力 | 132 页 | 1.12 MB | 1 年前
    3
  • pdf文档 Dapr september 2023 security audit report

    c.go:1047 +0x5d fp=0x7fffb29cd648 sp=0x7fffb29cd618 pc=0x434a7d runtime.sysMapOS(0xc000400000, 0x6fc400000?) /usr/local/go/src/runtime/mem_linux.go:187 +0x11b fp=0x7fffb29cd690 sp=0x7fffb29cd648 pc=0x417f7b runtime.(*mcache).allocLarge(0x3f?, 0x6fc23ac00, 0x1) /usr/local/go/src/runtime/mcache.go:234 +0x85 fp=0xc00011bcf8 sp=0xc00011bcb0 pc=0x4169e5 runtime.mallocgc(0x6fc23ac00, 0x52a240, 0x1) /usr/local/g ing.go:1576 +0x10b fp=0xc000392fc0 sp=0xc000392f70 pc=0x53632b testing.(*T).Run.func1() /usr/local/go/src/testing/testing.go:1629 +0x2a fp=0xc000392fe0 sp=0xc000392fc0 pc=0x53736a runtime.goexit()
    0 码力 | 47 页 | 1.05 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    plot(kind='scatter', x='SepalRatio', y='PetalRatio')) ...: Out[5]: fc953a64c50> See the documentation for more. (GH9229) 138 Chapter 1. What’s New pandas: powerful Python figure() Out[1]: fc98025e650> In [2]: fx['FR'].plot(style='g') Out[2]: fc9716abf10> In [3]: fx['IT'].plot(style='k--', secondary_y=True) secondary_y=True) Out[3]: fc9878ba990> ../_static/whatsnew_secondary_y.png Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.14 机器管理

    365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d 00-worker 365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d 01-master-kubelet 365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0 31d 01-worker-kubelet 365c1cfd14de5b0e3b85e0fc815b0060f36ab955 3.2.0
    0 码力 | 277 页 | 4.37 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08深度学习-深度卷积神经网络

    CONV2 28x28x6 14x14x6 MAXPOOL 10x10x16 MAXPOOL 5x5x16 POOL2 F C F C FC2 FC3 S O F T M A X 120 84 10 F C FC2 LeNet-5 32x32x1 400 6 AlexNet • 2012年,AlexNet 横空出世。它首次证 明了学习到的特征可以超越手工设计 Conv3-32 Conv3-32 Conv3-32 Max-Pool Conv3-32 Conv3-128 Conv3-64 Conv3-64 Max-Pool Max-Pool FC-512 Output ConvNet Configuration Stacked layers Previous input x F(x) y=F(x) Stacked layers 替换全连接层 # 将最后的全连接层改成十分类 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net.fc = nn.Linear(512, 10) 4.卷积神经网络使用技巧 30 参考文献 • IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017 • Andrew Ng,http://www
    0 码力 | 32 页 | 2.42 MB | 1 年前
    3
共 206 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 21
前往
页
相关搜索词
PyTorch深度学习ExactlyoncefaulttoleranceinApacheFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020pytorch入门笔记03神经网络神经网神经网络CISBenchmarkRancherSelfAssessmentGuidev21.51.65.4Daprseptember2023securityauditreportpandaspowerfulPythondataanalysistoolkit0.19OpenShiftContainerPlatform4.14机器管理学习课程温州大学08深度卷积
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩