pandas: powerful Python data analysis toolkit - 0.13.1(Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 iv 19.11 STATA Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window We recommend that all users upgrade to this version. Highlights include: • Added infer_datetime_format keyword to read_csv/to_datetime to allow speedups for homo- geneously formatted datetimes. • Will0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0(Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 19.11 STATA Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 19 files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window Remove column keyword from DataFrame.sort (GH4370) • Remove precision keyword from set_eng_float_format() (GH395) • Remove force_unicode keyword from DataFrame.to_string(), DataFrame.to_latex(), and0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 3.5 Converting to and from period format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.6 Treatment of missing (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 23.11 Stata Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 3.5 Converting to and from period format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.6 Treatment of missing (Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716 23.11 STATA Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 23 files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0(Experimental) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 24.11 Stata Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 24.13 SAS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3. . . . . . . . . . . . . . . . . . . . . . . . . . 997 24.1.1.7 Quoting, Compression, and File Format . . . . . . . . . . . . . . . . . . . . . . . 997 24.1.1.8 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 24.1.9.3 Inferring Datetime Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 24.1.9.4 International Date Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 24.1.26.1 Writing to CSV format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 24.1.26.2 Writing a formatted0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2. . . . . . . . . . . . . . . . . . . . . . . . . . 993 24.1.1.7 Quoting, Compression, and File Format . . . . . . . . . . . . . . . . . . . . . . . 993 24.1.1.8 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 24.1.9.3 Inferring Datetime Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 24.1.9.4 International Date Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 24.1.26.1 Writing to CSV format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 24.1.26.2 Writing a formatted0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 Quoting, Compression, and File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 Inferring Datetime Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 International Date Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 Writing to CSV format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 Writing a formatted0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 Quoting, Compression, and File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 Inferring Datetime Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 International Date Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 Writing to CSV format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 Writing a formatted0 码力 | 1937 页 | 12.03 MB | 1 年前3
Keras: 基于 Python 的深度学习库/tmp/.keras/ 作为备份。 Keras 配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如 下所示: { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } 它包含以下字段: Conv2D [source] keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform' 当使用该层作为模型第一层时,需要提供 input_shape 参数(整数元组,不包含 样本表示的轴) ,例如,input_shape=(128, 128, 3) 表示 128x128 RGB 图像,在 data_format="channels_last" 时。 参数 • filters: 整数,输出空间的维度(即卷积中滤波器的输出数量)。 • kernel_size: 一个整数,或者 2 个整数表示的元组或列表,指明0 码力 | 257 页 | 1.19 MB | 1 年前3
共 275 条
- 1
- 2
- 3
- 4
- 5
- 6
- 28













